
Li�-and-Shi�: Obtaining Simulation Extractable Subversion
and Updatable SNARKs Generically

Behzad Abdolmaleki1 and Sebastian Ramacher2 and Daniel Slamanig2

Young Researcher Crypto Seminar, 16.10.2020
1University of Tartu, 2AIT Austrian Institute of Technology, Vienna



Introduction



Zero-knowledge Proofs

NP-language L

• Prover wants to convince veri�er that some x ∈ L
• Without revealing information beyond the statement x ∈ L
• De�ne relation RL: x ∈ L⇔ ∃w : (x, w) ∈ RL

BP

Prover (x, w) Veri�er x
x ∈ L 3

1



Making them Non-Interactive: CRS

Common reference string model

TTP crs

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

π

crscrs

2



Important Properties

Prover cannot cheat

• Prover unable to produce valid proofs for x 6∈ L
ó Soundness
• Property desired by the veri�er

Veri�er does not learn any information on witness w

• Real proofs cannot be distinguished from simulated proofs
ó Zero-knowledge
• Property desired by the prover

3



Important Properties

Prover cannot cheat

• Prover unable to produce valid proofs for x 6∈ L
ó Soundness
• Property desired by the veri�er

Veri�er does not learn any information on witness w

• Real proofs cannot be distinguished from simulated proofs
ó Zero-knowledge
• Property desired by the prover

3



Important Properties

Proofs of Knowledge

• Special extractor can extract witness from proofs
ó Knowledge Soundness

Strong versions

• (Knowledge) Soundness also holds if adversary can query simulated proofs
ó Simulation (knowledge) soundness
• Also called simulation (sound) extractability (SE)

4



Important Properties

Proofs of Knowledge

• Special extractor can extract witness from proofs
ó Knowledge Soundness

Strong versions

• (Knowledge) Soundness also holds if adversary can query simulated proofs
ó Simulation (knowledge) soundness
• Also called simulation (sound) extractability (SE)

4



On Simulation Soundness

In a real world protocol:

• Adversary sees many di�erent proofs
• Might be possible to turn proof π for word x into a proof π′ 6= π

• Or worse: turn into a proof π′ for a di�erent word x′ 6= x

Hence

• Adversary may query proofs
• Must produce a proof not queried before

Similar issue for signatures: one-time EUF-CMA – EUF-CMA – strong EUF-CMA

5



On Simulation Soundness

In a real world protocol:

• Adversary sees many di�erent proofs
• Might be possible to turn proof π for word x into a proof π′ 6= π

• Or worse: turn into a proof π′ for a di�erent word x′ 6= x

Hence

• Adversary may query proofs
• Must produce a proof not queried before

Similar issue for signatures: one-time EUF-CMA – EUF-CMA – strong EUF-CMA

5



NIZKs in the CRS Model

• Zero-knowledge contradicts extractor
• Knowledge soundness contradicts simulator

They need to have more power

• Extractor gets extraction trapdoor
• Simulator gets simulation trapdoor

6



NIZKs in the CRS Model

• Zero-knowledge contradicts extractor
• Knowledge soundness contradicts simulator

They need to have more power

• Extractor gets extraction trapdoor
• Simulator gets simulation trapdoor

6



NIZKs in the CRS Model

TTP crs

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

Extractor Simulator

π

crscrs

crs crs

7



NIZKs in the CRS Model

TTP crs, ts, te

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

Extractor te Simulator ts

π

crscrs

crs, te crs, ts

7



NIZKs in the CRS Model

TTP crs, ts, te

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

Extractor te
w← Ext(crs, te, π)

Simulator ts
π ← Sim(crs, ts, x)

π

π

crscrs

crs, te crs, ts

π

7



Achieving Simulation Extractability



The C∅C∅ Framework [KZM+15]

Extend statement to

c = Ω.Enc(pkΩ, w; r0) ∧ ((x, w) ∈ RL ∨ (µ = fs(pkΣ1) ∧ ρ = Commit(s; r1)))

and sign (x, c, µ, πL′) with skΣ1

crs extended with ρ,pkΩ; s, r0 simulation trapdoor, skΩ extraction trapdoor

• Ω: public-key encryption
• Σ1: strong one-time signature
• f : PRF
• Commit: Commitment

using SHA256
Proving pre-image of a random oracle

8



The C∅C∅ Framework [KZM+15]

Extend statement to

c = Ω.Enc(pkΩ, w; r0) ∧ ((x, w) ∈ RL ∨ (µ = fs(pkΣ1) ∧ ρ = Commit(s; r1)))

and sign (x, c, µ, πL′) with skΣ1

crs extended with ρ,pkΩ; s, r0 simulation trapdoor, skΩ extraction trapdoor

• Ω: public-key encryption
• Σ1: strong one-time signature
• f : PRF
• Commit: Commitment using SHA256
Proving pre-image of a random oracle

8



The OC∅C∅ Framework [ARS20]

Fixed-value key-binding PRF [CMR98; Fis99]

• For a PRF f with key s and special value β, hard to �nd s′ with fs(β) = fs′(β)

Change statement to

(x, w) ∈ RL ∨ (µ = fs(pkΣ1) ∧ ρ = fs(β))

Allows instantiation with low complexity primitives

9



The OC∅C∅ Framework [ARS20]

Fixed-value key-binding PRF [CMR98; Fis99]

• For a PRF f with key s and special value β, hard to �nd s′ with fs(β) = fs′(β)

Change statement to

(x, w) ∈ RL ∨ (µ = fs(pkΣ1) ∧ ρ = fs(β))

Allows instantiation with low complexity primitives

9



Subversion and Updatability



CRS Generator

TTP crs

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

π

crscrs

10



CRS Generator

TTP crs

BP

Prover (x, w)

π ← Prove(crs, x, w)

Veri�er x
Verify(crs, x, π) = 1⇒ x ∈ L

π

crscrs

10



What if the CRS generator is malicious?

No guarantee that

• CRS is correct
• CRS from the correct distribution
• Trapdoors exist

Perform CRS generation with MPC protocol

• Examples: zcash ceremony
• But in practice complicated, expensive and requires much e�ort beside
techical realization

11



What if the CRS generator is malicious?

No guarantee that

• CRS is correct
• CRS from the correct distribution
• Trapdoors exist

Perform CRS generation with MPC protocol

• Examples: zcash ceremony
• But in practice complicated, expensive and requires much e�ort beside
techical realization

11



Subversion Resistance [BFS16]

• Subversion soundness: sound even if CRS subverted
• Subversion zero-knowledge: zero-knowledge even if CRS subverted
• Some combinations impossible

WI Zero-Knowledge Subversion ZK

Soundness 3 3 3

Subversion soundness 3 7 7

12



Updatable NIZK [GKM+18]

• Assume adversary has complete (or partial) control over crs generation
• Add Ucrs algorithm: outputs a new CRS and proof of update
• Also add Vcrs: veri�es CRS, updates and proofs

Idea: either crs was generated honestly or one update was done honestly

• Veri�er updates CRS to ensure soundness
• Prover updates CRS to ensure zero-knowledge

13



Towards Lamassu: Key-homomorphic Signatures / Updatable Signatures

Key-homomorphic signatures:

• Homomoprhism between private-key and public-key spaces: µ : S→ P
Natural in the DLOG setting: x 7→ gx

• Signatures can be adapted from pk to pk′ = pk · µ(sk′ − sk) if sk′ − sk known
• Examples: Schnorr, BLS, and many more

Updatable signatures:

• Upk: update pk and provide proof of update
• Vpk: verify update
• Idea: either original pk created honestly or update was done honestly
• Example: Schnorr in bilinear groups with BDH knowledge assumption

14



Towards Lamassu: Simulation Soundness using Key-Homomorphic Signatures

Compiler [DS19]: “x ∈ L or I can sign with a public key in the CRS”

• Extend statement to

(x, w) ∈ RL ∨ pk′ = pk · µ(sk′ − sk)

• Generate key pairs (sk′,pk′) for Σ and (sk1,pk1) for Σ1

• Sign pk1 with sk′ and sign the proof with sk1

• Σ: key-homormorphic EUF-CMA signature scheme
• Σ1: one-time signature scheme
• Extend CRS with a public key of Σ: pk
• Put secret key sk of Σ in simulation trapdoor

15



Lamassu [ARS20]

Generic framework to obtain

• subversion or updatable
• and simulation extractable zk-SNARKs

Built from

• updatable signatures
• DS compiler for simulation soundess [DS19]

16



Conclusion



Conclusion

C∅C∅, OC∅C∅:

• C∅C∅ hard to instantiate correctly and e�ciently
• Even if commitment with enough structure used, C∅C∅ does not seem to yield
updatability

• sub-ZK SE SNARK if underlying SNARK already sub-ZK

Lamassu:

• generic sub-ZK, updatable SE SNARK
• Open problems: key-homomorphic / updatable signatures from lattices, ...

17



Questions?
Full version: https://eprint.iacr.org/2020/062.pdf

18

https://eprint.iacr.org/2020/062.pdf


References



References i

[ARS20] B. Abdolmaleki, S. Ramacher, and D. Slamanig. Li�-and-shi�: obtaining
simulation extractable subversion and updatable snarks generically.
Cryptology ePrint Archive, Report 2020/062, 2020.
https://eprint.iacr.org/2020/062, to appear at ACM CCS 2020.

[BFS16] M. Bellare, G. Fuchsbauer, and A. Scafuro. Nizks with an untrusted CRS:
security in the face of parameter subversion. In ASIACRYPT (2),
volume 10032 of LNCS, pages 777–804, 2016.

[CMR98] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In STOC,
pages 131–140. ACM, 1998.

https://eprint.iacr.org/2020/062


References ii

[DS19] D. Derler and D. Slamanig. Key-homomorphic signatures: de�nitions
and applications to multiparty signatures and non-interactive
zero-knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

[Fis99] M. Fischlin. Pseudorandom function tribe ensembles based on
one-way permutations: improvements and applications. In
EUROCRYPT, volume 1592 of LNCS, pages 432–445. Springer, 1999.

[GKM+18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable
and universal common reference strings with applications to zk-snarks.
In CRYPTO (3), volume 10993 of LNCS, pages 698–728. Springer, 2018.



References iii

[KZM+15] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass,
abhi shelat, and E. Shi. Coco: a framework for building composable
zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1093,
2015. https://eprint.iacr.org/2015/1093.

https://eprint.iacr.org/2015/1093

	Introduction
	Achieving Simulation Extractability
	Subversion and Updatability
	Conclusion
	Appendix
	References


