Generic Double-Authentication Preventing Signatures and a Post-Quantum Instantiation

David Derler^{†,1}, **Sebastian Ramacher**[‡], Daniel Slamanig[§] PROVSEC'18, October 27, 2018

¹ work done while at Graz University of Technology

Introduction

Digital Signatures

Applications

- Signing transactions in cryptocurrencies
- Certificate and software signing
- \cdot And many more

Double-Authentication Preventing Signatures [PS14]

- Same context (address), different content
- » Extract secret key
 - Extraction from honest or malicious keys

Applications

- Deterring certificate subversion
- Double-spending prevention in offline payment channels
- Non-equivocation contracts

Approach	Address space	Extraction	Setting	Generic
[PS14]	exponential	DSE	factoring	×
[RKS15]	exponential	DSE	DLOG	×
[BPS17]	exponential	DSE	factoring	×
[BKN17]	exponential	DSE	SIS+LWE	×
[DRS18]	small	wDSE*	DLOG	\checkmark
[Poe18]	small	DSE	DLOG	×

Can we build efficient DAPS without address space limitation from existing signature schemes in a black-box way?

DAPS without Structured Hardness Assumptions

 \cdot One point reveals nothing about sk_{Σ}

- Two points allow to recover $\boldsymbol{s}\boldsymbol{k}_{\Sigma}$

 $\cdot\,$ DLOG-based signature scheme Σ

The [DRS18] Approach

- $\cdot\,$ DLOG-based signature scheme Σ
- + Extend signature with secret share of private key Sharing polynomial is address dependent
- » Extraction of $\boldsymbol{\Sigma}$ key

The [DRS18] Approach

- $\cdot\,$ DLOG-based signature scheme Σ
- + Extend signature with secret share of private key Sharing polynomial is address dependent
- » Extraction of $\boldsymbol{\Sigma}$ key
- + Add consistency proof of share
- » Store encrypted coefficients in public key

The [DRS18] Approach

- $\cdot\,$ DLOG-based signature scheme Σ
- + Extend signature with secret share of private key Sharing polynomial is address dependent
- » Extraction of **Σ** key
- + Add consistency proof of share
- » Store encrypted coefficients in public key
- » Polynomially sized address space

 \cdot Derive coefficients of sharing polynomial using PRF ${\cal F}$

- \cdot Derive coefficients of sharing polynomial using PRF ${\cal F}$
- "Commit" to the PRF secret key
- » Fixed-value key-binding PRF [CMR98, Fis99]

- \cdot Derive coefficients of sharing polynomial using PRF ${\cal F}$
- "Commit" to the PRF secret key
- » Fixed-value key-binding PRF [CMR98, Fis99]
- Signatures: secret share and consistency proof
- » Signature-of-knowledge style signature

- \cdot Derive coefficients of sharing polynomial using PRF ${\cal F}$
- "Commit" to the PRF secret key
- » Fixed-value key-binding PRF [CMR98, Fis99]
- Signatures: secret share and consistency proof
- » Signature-of-knowledge style signature
- + Only requirement: $\boldsymbol{\Sigma}$ public key image of one-way function

commit to $\boldsymbol{\mathsf{sk}}_{\mathcal{F}}$

secret sharing of \boldsymbol{sk}_{Σ}

consistency proof of PRF commitment

consistency proof of sharing polynomial computation

consistency proof of secret sharing

Generic approach:

- + $\boldsymbol{\Sigma}$ with OWF relation between secret and public key
- + Verifiable Shamir secret sharing of $\boldsymbol{\Sigma}$ secret key
- + Sharing polynomial determined by address

$$f_a(x) = \mathcal{F}(\mathsf{sk}_\mathcal{F}, a) \cdot x + \mathsf{sk}_\Sigma$$

Generic approach:

- + $\boldsymbol{\Sigma}$ with OWF relation between secret and public key
- + Verifiable Shamir secret sharing of $\boldsymbol{\Sigma}$ secret key
- + Sharing polynomial determined by address

$$f_a(x) = \mathcal{F}(\mathsf{sk}_{\mathcal{F}}, a) \cdot x + \mathsf{sk}_{\Sigma}$$

• Zero-knowledge proof of consistency

Security (informal)

- Unforgeability from simulation-sound extractability, PRF and OWF properties
- Extraction from fixed-value-key-binding of PRF

Security (informal)

- Unforgeability from simulation-sound extractability, PRF and OWF properties
- Extraction from fixed-value-key-binding of PRF

Extension

- + Extendable to N-authentication preventing signatures
- > Use degree N 1 sharing polynomial

Instantiation

From Picnic:

- + OWF built from block cipher LowMC
- » Use LowMC also for PRF
- » Estimated signature size: 408 KB

Instantiation

From Picnic:

- + OWF built from block cipher LowMC
- » Use LowMC also for PRF
- » Estimated signature size: 408 KB

From **SPHINCS**:

- Secret-key-to-public-key relation more expensive
- Multiple evaluations of hash functions for consistency proof

Instantiation

From Picnic:

- + OWF built from block cipher LowMC
- » Use LowMC also for PRF
- » Estimated signature size: 408 KB

From **SPHINCS**:

- Secret-key-to-public-key relation more expensive
- Multiple evaluations of hash functions for consistency proof

From stuctured hardness assumptions:

- + Fulfill secret-key-to-public-key relation requirement
- **?** Suitable proof system
- » Recent progress [AGM18]

Extending Any Signature Scheme

Signature scheme Σ Sign(Ҷ-Σ,...) Verify(⇔-Σ,...)

Signature scheme Σ Sign(Ҷ-Σ,...) Verify(⇔-Σ,...) DAPS scheme D Sign(Ҷ-D,...) Verify(⇔-D,...)

- Extend any signature scheme to DAPS
- + From any other DAPS
- » DAPS from standard signatures like EdDSA, ECDSA

- Extend any signature scheme to DAPS
- + From any other DAPS
- » DAPS from standard signatures like EdDSA, ECDSA

Security (informal)

- Unforgeability from unforgeability of signature scheme
- Extraction from extraction of DAPS

Conclusion

Approach	Address space	Extraction	Setting	Generic
[PS14]	exponential	DSE	factoring	×
[RKS15]	exponential	DSE	DLOG	×
[BPS17]	exponential	DSE	factoring	×
[BKN17]	exponential	DSE	lattices	×
[DRS18]	small	wDSE*	DLOG	\checkmark
[Poe18]	small	DSE	DLOG	×
Constr. 1	exponential	wDSE	symmetric	\checkmark
Constr. 2	exponential	DSE	any	\checkmark

Contribution

- ✓ Generic constructions of DAPS
- ✓ Construction 1: DAPS from symmetric-key primitives
- ✓ Construction 2: Extension of any signature scheme to DAPS

Questions?

Full version: https://ia.cr/2018/790

References i

- [AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-knowledge proofs for composite statements. In CRYPTO (3), volume 10993 of Lecture Notes in Computer Science, pages 643–673. Springer, 2018.
- [BKN17] Dan Boneh, Sam Kim, and Valeria Nikolaenko. Lattice-based DAPS and generalizations: Self-enforcement in signature schemes. In ACNS, volume 10355 of Lecture Notes in Computer Science, pages 457–477. Springer, 2017.
- [BPS17] Mihir Bellare, Bertram Poettering, and Douglas Stebila. Deterring certificate subversion: Efficient double-authentication-preventing signatures. In Public Key Cryptography (2), volume 10175 of Lecture Notes in Computer Science, pages 121–151. Springer, 2017.
- [CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. **Perfectly one-way** probabilistic hash functions (preliminary version). In *STOC*, pages 131–140. ACM, 1998.
- [DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Short double- and n-times-authentication-preventing signatures from ECDSA and more. In EuroS&P, pages 273–287. IEEE, 2018.

References ii

- [Fis99] Marc Fischlin. Pseudorandom function tribe ensembles based on one-way permutations: Improvements and applications. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 432–445. Springer, 1999.
- [Poe18] Bertram Poettering. Shorter double-authentication preventing signatures for small address spaces. In AFRICACRYPT, volume 10831 of Lecture Notes in Computer Science, pages 344–361. Springer, 2018.
- [PS14] Bertram Poettering and Douglas Stebila. Double-authentication-preventing signatures. In ESORICS (1), volume 8712 of Lecture Notes in Computer Science, pages 436–453. Springer, 2014.
- [RKS15] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar, coins on firel: Penalizing equivocation by loss of bitcoins. In ACM Conference on Computer and Communications Security, pages 219–230. ACM, 2015.

create offline payment channel

receive deposit on misuse