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Introduction
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Applications

• Signing transactions in cryptocurrencies
• Certi�cate and so�ware signing
• And many more
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Double-Authentication Preventing Signatures [PS14]
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• Same context (address), di�erent content
F Extract secret key
• Extraction from honest or malicious keys
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Double-Authentication Preventing Signatures [PS14] (cont.)

Applications

• Deterring certi�cate subversion
• Double-spending prevention in o�ine payment channels
• Non-equivocation contracts
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Existing DAPS

Approach Address space Extraction Setting Generic

[PS14] exponential DSE factoring ×
[RKS15] exponential DSE DLOG ×
[BPS17] exponential DSE factoring ×
[BKN17] exponential DSE SIS+LWE ×
[DRS18] small wDSE∗ DLOG X

[Poe18] small DSE DLOG ×
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Can we build e�cient DAPS without address
space limitation from existing signature

schemes in a black-box way?
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DAPS without Structured Hardness
Assumptions



Shamir Secret Sharing

x

f (x) = ρax + skΣ
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Shamir Secret Sharing

z = f (p)
x

f (x) = ρax + skΣ
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Shamir Secret Sharing

x

f (x) = ρax + skΣ

• One point reveals nothing about skΣ
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Shamir Secret Sharing

z′ = f (p′)

x

f (x) = ρax + skΣ

• Two points allow to recover skΣ
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The [DRS18] Approach

• DLOG-based signature scheme Σ

+ Extend signature with secret share of private key
Sharing polynomial is address dependent

F Extraction of Σ key
+ Add consistency proof of share
F Store encrypted coe�cients in public key
F Polynomially sized address space
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Resolving the Address Space Limitation

• Derive coe�cients of sharing polynomial using PRF F

• “Commit” to the PRF secret key
F Fixed-value key-binding PRF [CMR98, Fis99]
• Signatures: secret share and consistency proof
F Signature-of-knowledge style signature
+ Only requirement: Σ public key image of one-way function
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Construction
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Construction

skΣ¤ skF
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Wrap Up

Generic approach:

• Σ with OWF relation between secret and public key
+ Veri�able Shamir secret sharing of Σ secret key
+ Sharing polynomial determined by address

fa(x) = F(skF ,a) · x + skΣ

• Zero-knowledge proof of consistency
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Wrap Up (cont.)

Security (informal)

• Unforgeability from simulation-sound extractability, PRF
and OWF properties

• Extraction from �xed-value-key-binding of PRF

Extension

+ Extendable to N-authentication preventing signatures
F Use degree N− 1 sharing polynomial
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Instantiation

From Picnic:

+ OWF built from block cipher LowMC
F Use LowMC also for PRF
F Estimated signature size: 408 KB

From SPHINCS:

• Secret-key-to-public-key relation more expensive
• Multiple evaluations of hash functions for consistency
proof

From stuctured hardness assumptions:

+ Ful�ll secret-key-to-public-key relation requirement
? Suitable proof system
F Recent progress [AGM18]
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Extending Any Signature Scheme



Black-box Extension

Signature scheme Σ
Sign(¤-Σ, ...) Verify(�¤ -Σ, ...)

DAPS scheme D
Sign(¤-D, ...) Verify(�¤ -D, ...)

DAPS scheme

Sign(¤, ...) Verify(�¤ , ...)

¤-Σ⊕ H(¤-D)

Extract(�¤ -D, ...)

Extract(�¤ , ...)

12



Black-box Extension

Signature scheme Σ
Sign(¤-Σ, ...) Verify(�¤ -Σ, ...)

DAPS scheme D
Sign(¤-D, ...) Verify(�¤ -D, ...)

DAPS scheme

Sign(¤, ...) Verify(�¤ , ...)

¤-Σ⊕ H(¤-D)

Extract(�¤ -D, ...)

Extract(�¤ , ...)

12



Black-box Extension

Signature scheme Σ
Sign(¤-Σ, ...) Verify(�¤ -Σ, ...)

DAPS scheme D
Sign(¤-D, ...) Verify(�¤ -D, ...)

DAPS scheme

Sign(¤, ...) Verify(�¤ , ...)

¤-Σ⊕ H(¤-D)

Extract(�¤ -D, ...)

Extract(�¤ , ...)

12



Black-box Extension

Signature scheme Σ

Sign(¤-Σ, ...) Verify(�¤ -Σ, ...)

DAPS scheme D

Sign(¤-D, ...) Verify(�¤ -D, ...)

DAPS scheme

Sign(¤, ...) Verify(�¤ , ...)

¤-Σ⊕ H(¤-D)

Extract(�¤ -D, ...)

Extract(�¤ , ...)

12



Black-box Extension (cont.)

• Extend any signature scheme to DAPS
+ From any other DAPS
F DAPS from standard signatures like EdDSA, ECDSA

Security (informal)

• Unforgeability from unforgeability of signature scheme
• Extraction from extraction of DAPS
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Conclusion



DAPS Constructions

Approach Address space Extraction Setting Generic

[PS14] exponential DSE factoring ×
[RKS15] exponential DSE DLOG ×
[BPS17] exponential DSE factoring ×
[BKN17] exponential DSE lattices ×
[DRS18] small wDSE∗ DLOG X

[Poe18] small DSE DLOG ×

Constr. 1 exponential wDSE symmetric X

Constr. 2 exponential DSE any X

14



Conclusion

Contribution

Ë Generic constructions of DAPS
Ë Construction 1: DAPS from symmetric-key primitives
Ë Construction 2: Extension of any signature scheme to DAPS
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Questions?

Full version: https://ia.cr/2018/790

Supported by:
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