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Introduction



Digital Signatures
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Applications

- Signing transactions in cryptocurrencies
- Certificate and software signing

- And many more



Double-Authentication Preventing Signatures [PS14]
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- Same context (address), different content

» Extract secret key

- Extraction from or keys



Double-Authentication Preventing Signatures [PS14] (cont.)

Applications

- Deterring certificate subversion
- Double-spending prevention in offline payment channels

- Non-equivocation contracts



Existing DAPS

Approach ‘ Address space | Extraction | Setting Generic

[PS14] exponential DSE factoring | x
[RKS15] exponential DSE DLOG X
[BPS17] exponential DSE factoring | x
[BKN17] exponential DSE SIS+LWE | x
[DRS18] small wDSE* DLOG v
[Poe18] small DSE DLOG X




Can we build efficient DAPS without address
space limitation from existing signature
schemes in a black-box way?



DAPS without Structured Hardness
Assumptions



Shamir Secret Sharing
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Shamir Secret Sharing

f(X) = paX + sks

- One point reveals nothing about skg



Shamir Secret Sharing

f(X) = paX + sks

- Two points allow to recover sks



The [DRS18] Approach

- DLOG-based signature scheme X
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The [DRS18] Approach

- DLOG-based signature scheme X

+ Extend signature with secret share of private key
Sharing polynomial is address dependent

» Extraction of X key

+ Add consistency proof of share

» Store encrypted coefficients in public key
» address space



Resolving the Address Space Limitation

- Derive coefficients of sharing polynomial using PRF F
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Resolving the Address Space Limitation

- Derive coefficients of sharing polynomial using PRF F

- “Commit” to the PRF secret key

» Fixed-value key-binding PRF [CMR98, Fis99]

- Signatures: secret share and consistency proof

» Signature-of-knowledge style signature

+ Only requirement: 2 public key image of one-way function



& | sks

#  pks



Q Sk): Sk]:

#® pks B c



Q Sk): Sk]:

#® pks p———cC

commit to skx



Q Sk): Sk]:

#® pks B c



&, | sks skr
#* Dk B c
m [a p
<
o V4

secret sharing of sks
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consistency proof of X keys
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consistency proof of PRF commitment
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consistency proof of sharing polynomial computation
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Generic approach:

- 2 with OWF relation between secret and public key
+ of X secret key

+ Sharing polynomial determined by address

fa(x) = F(skz,a) - x + sks



Generic approach:

- 2 with OWF relation between secret and public key
+ of X secret key

+ Sharing polynomial determined by address

fa(x) = F(skz,a) - x + sks

- Zero-knowledge proof of consistency



Wrap Up (cont.)

Security (informal)

from simulation-sound extractability, PRF
and OWF properties

from fixed-value-key-binding of PRF
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Wrap Up (cont.)

Security (informal)

from simulation-sound extractability, PRF
and OWF properties

from fixed-value-key-binding of PRF
Extension

+ Extendable to

» Use degree N — 1 sharing polynomial
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Instantiation

From

+ OWF built from block cipher LowMC
» Use LowMC also for PRF
» Estimated signature size: 408 KB
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Instantiation

From

+ OWF built from block cipher LowMC
» Use LowMC also for PRF
» Estimated signature size: 408 KB

From

- Secret-key-to-public-key relation more expensive
- Multiple evaluations of hash functions for consistency
proof

From

+ Fulfill secret-key-to-public-key relation requirement
? Suitable proof system
» Recent progress [AGM18]

1



Extending Any Signature Scheme




Black-box Extension

Signature scheme X
Sign(&:-3,...)  Verify(#-3,...)
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Black-box Extension

Signature scheme X
Sign(&:-3,...)  Verify(#-3,...)
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( DAPS scheme D
Sign(&:-D,...)  Verify(#-D,...)

(.

12



Black-box Extension

DAPS scheme

(S

Signature scheme X
Sign(&:-3,...)  Verify(#-3,...)

|

Vs

(S

DAPS scheme D
Sign(%:-D,...)  Verify(#-D,...)
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Sign(&, ...)

Verify (%, ...)
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Black-box Extension

DAPS scheme

Signature scheme X
&-3 @ H(&-D)
DAPS scheme D
Extract(#-D,...)

Extract(#, ...)
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Black-box Extension (cont.)

- Extend any signature scheme to DAPS
+ From any other DAPS
» DAPS from standard signatures like EdDSA, ECDSA
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Black-box Extension (cont.)

- Extend any signature scheme to DAPS
+ From any other DAPS
» DAPS from standard signatures like EdDSA, ECDSA

Security (informal)

from unforgeability of signature scheme

from extraction of DAPS
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Conclusion




DAPS Constructions

Approach ‘ Address space ‘ Extraction ‘ Setting ‘ Generic
[PS14] exponential DSE factoring | x
[RKS15] exponential DSE DLOG X
[BPS17] exponential DSE factoring | x
[BKN17] exponential DSE lattices X
[DRS18] small wDSE* DLOG v
[Poe18] small DSE DLOG X
Constr. 1 | exponential wDSE symmetric | v/
Constr. 2 | exponential DSE any v
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Conclusion

Contribution

« Generic constructions of DAPS
« Construction 1: DAPS from symmetric-key primitives

« Construction 2: Extension of any signature scheme to DAPS
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Questions?

Full version: https://ia.cr/2018/790

—
Wy
Supported by: prisma cloud


https://ia.cr/2018/790
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Penalize Double-Spending

Kiii transaction 3
custome\

merchants

transaction 3



Penalize Double-Spending
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