Short Double- and N-times-Authentication-Preventing
Signatures from ECDSA and More

David Derler?, Sebastian Ramacher?, Daniel Slamanig®
EUROS&P'18, April 25, 2018

i .# 5
.E,l;!. AITM"

Motivation

Digital Signatures

o G

AP

Signer (%, %) Verifier (#%)

[3 « Sign(&,D) Verify(i¥,[3) = 1V

Applications

- Signing transactions in cryptocurrencies
- Certificate and software signing

- And many more

Penalize Double-Spending

()

»

customer

o 6o §o

merchants

Penalize Double-Spending

create offline payment channel

deposit B

()

»

customer

o 6o §o

merchants

Penalize Double-Spending

.~ B

»

customer

transaction 1

o 6o §o

merchants

Penalize Double-Spending

ﬁ
custome\

merchants

transaction 2

o 6o §o

Penalize Double-Spending

transaction 3

transaction 3

4%
3
custome\

@

merchants

Penalize Double-Spending

2

()

»

customer

receive deposit
on misuse

2
-
i

merchants

Double-Authentication Preventing Signatures [PS14]

H63

D.\ a,

w] 7
0

- Same context, different content

» Can extract secret key

- Extraction from and keys

Existing DAPS

Existing schemes

- Factoring based [PS14, PS17, BPS17]
- DLOG based [RKS15]
- All of them based on trapdoor properties

Existing DAPS

Existing schemes

- Factoring based [PS14, PS17, BPS17]
- DLOG based [RKS15]
- All of them based on trapdoor properties

Problems:

- Factoring based: not compatible with plain RSA signatures
- DLOG based: inefficient

Can we build efficient DAPS from existing
signature schemes in a black-box way?

Black-box Extension

Signature scheme X

Sign(%:-%,..) Verify(#-%,...)

Black-box Extension

4 \

DAPS scheme

Signature scheme X

Sign(%:-%,..) Verify(#-%,...)

Sign(&, ...) Verify(#, ...)

Black-box Extension

4 \

DAPS scheme

{ Signature scheme X w
[{ Sign(%:-%, ...) 1(Verify(#-3, ...) J)
uses uses
Sign(&, ...) Verify(#, ...)

S AN J

Black-box Extension

DAPS scheme

{ Signature scheme X w
[{ Sign(%:-%, ...) 1(Verify(#-3, ...) J)
uses uses
Sign(&, ...) Verify(#, ...)

DAPS secret key contains X secret key

Extraction of X secret key often sufficient

« Example: ECDSA key protecting Bitcoin deposit

Extraction of X secret key often sufficient

« Example: ECDSA key protecting Bitcoin deposit
» New security notions covering 2 secret key extraction

+ for honest and malicious keys

Extraction of X secret key often sufficient

« Example: ECDSA key protecting Bitcoin deposit
» New security notions covering ¥ secret key extraction
+ for honest and malicious keys

H63

& \ Q-3

B -
0

Extraction of X secret key often sufficient

« Example: ECDSA key protecting Bitcoin deposit
» New security notions covering 2 secret key extraction

+ for honest and malicious keys
Most applications

- Polynomial address space sufficient

Construction

Shamir Secret Sharing

f(X) = pax + sks

Shamir Secret Sharing

f(X) = pax + sks

Shamir Secret Sharing

f(X) = pax + sks

- One point reveals nothing about sky

Shamir Secret Sharing

f(X) = pax + sks

- One point reveals nothing about sky
- Two points allow to recover sks

Generic DAPS

& | sks

pks

Generic DAPS

& | sks

pks

Generic DAPS

& | sks

pks

m [a p
\

o Nos

signature on m

Generic DAPS

&, | sks Pa
#* pks

m [a p
o 105 z

secret sharing of sks

Generic DAPS

Q, Skz Pa

AN

pks pkg —— Cq

encrypt coefficients

Generic DAPS

Q, Skz Pa
#* pks pke Ca
m Ba p

Generic DAPS

sks
#* pks Ca
m a
: BB \

consistency proof

Generic DAPS: Wrap Up

Generic approach:

use of X
+ of X secret key

+ Sharing polynomial determined by address

f(X) = pax + sks

10

Generic DAPS: Wrap Up

Generic approach:

use of X
+ of X secret key

+ Sharing polynomial determined by address

f(X) = pax + sks

- Evaluate verification relation in encrypted domain

- Zero-knowledge proof of consistency

10

Generic DAPS: Wrap Up

Generic approach:

use of X
+ of X secret key

+ Sharing polynomial determined by address

f(X) = pax + sks

- Evaluate verification relation in encrypted domain

- Zero-knowledge proof of consistency

Can prove unforgeability via unforgeability of = ()

10

Generic DAPS: Wrap Up (cont)

+ For example, applies to , ,
+ DAPS signatures
+ Public key linear in size of address space

(contains encrypted sharing polynomials per address)

11

Generic DAPS: Wrap Up (cont)

+ For example, applies to , ,
+ DAPS signatures
+ Public key linear in size of address space

(contains encrypted sharing polynomials per address)
+ Extendable to

» Use degree N — 1 sharing polynomial

1

Implementation

- Easy extension of existing implementations
+ Implement secret sharing
+ Implement consistency proof

« We provide implementation in OpenSSL

12

Implementation

- Easy extension of existing implementations
+ Implement secret sharing
+ Implement consistency proof

« We provide implementation in OpenSSL

Scheme Sign Verify sk [pk| lo|

[ms] [ms] [bits] [bits] [bits]
ECDSA-DAPS (s) 0.76 133 256-(1+2n) 514-(1+n) 1280
ECDSA-DAPS (p) 023 035 256-(1+2n) 514-(1+n) 1280
ECDSA (s) 0.09 0.35 256 257 512
ECDSA (p) 0.06 0.21 256 257 512

Table 1: Runtime and sizes; secp256k1 (s), prime256v1 (p)

12

Conclusion

Conclusion

Contribution

« Generic construction
« Can extend virtually all DLOG-based signature schemes
« Focus on extraction of underlying signature scheme key
« Shortest black-box DAPS

(slightly weaker, yet very reasonable model)

« Extendable to N-authentication preventing signatures

13

Conclusion

Contribution

« Generic construction
« Can extend virtually all DLOG-based signature schemes
« Focus on extraction of underlying signature scheme key
« Shortest black-box DAPS

(slightly weaker, yet very reasonable model)

« Extendable to N-authentication preventing signatures
Follow-up work [Poe18]

- Even shorter DAPS ()

13

Conclusion

Contribution

« Generic construction
« Can extend virtually all DLOG-based signature schemes
« Focus on extraction of underlying signature scheme key
« Shortest black-box DAPS

(slightly weaker, yet very reasonable model)

« Extendable to N-authentication preventing signatures
Follow-up work [Poe18]
- Even shorter DAPS ()
Future work
- Reduce public key overhead per address

13

Questions?

Implementation: https://github.com/IAIK/daps-dl

N
A [

Supported by: prisma cleud

14

https://github.com/IAIK/daps-dl

References i

[BPS17] Mihir Bellare, Bertram Poettering, and Douglas Stebila. Deterring certificate
subversion: Efficient double-authentication-preventing signatures. In PKC,
2017.

[Poe18] Bertram Poettering. Shorter double-authentication preventing signatures for
small address spaces. In AFRICACRYPT, volume 10831 of Lecture Notes in
Computer Science, pages 344-361. Springer, 2018.

[PS14] Bertram Poettering and Douglas Stebila. Double-authentication-preventing
signatures. In ESORICS, 2014.

[PS17] Bertram Poettering and Douglas Stebila. Double-authentication-preventing
signatures. Int. J. Inf. Sec., 16(1), 2017.

[RKS15] Tim Ruffing, Aniket Kate, and Dominique Schroder. Liar, liar, coins on firel:
Penalizing equivocation by loss of bitcoins. In ACM CCS, 2015.

15

	Motivation
	Construction
	Conclusion

