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Motivation



Digital Signatures
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Applications

- Signing transactions in cryptocurrencies
- Certificate and software signing

- And many more
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Penalize Double-Spending

ﬁ
custome\

merchants

transaction 2

o 6o §o



Penalize Double-Spending
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Penalize Double-Spending
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Double-Authentication Preventing Signatures [PS14]
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- Same context, different content

» Can extract secret key

- Extraction from and keys



Existing DAPS

Existing schemes

- Factoring based [PS14, PS17, BPS17]
- DLOG based [RKS15]
- All of them based on trapdoor properties



Existing DAPS

Existing schemes

- Factoring based [PS14, PS17, BPS17]
- DLOG based [RKS15]
- All of them based on trapdoor properties

Problems:

- Factoring based: not compatible with plain RSA signatures
- DLOG based: inefficient



Can we build efficient DAPS from existing
signature schemes in a black-box way?
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Black-box Extension

DAPS scheme

{ Signature scheme X w
[ { Sign(%:-%, ...) 1( Verify(#-3, ...) J )
uses uses
Sign(&, ...) Verify(#, ...)

DAPS secret key contains X secret key
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Extraction of X secret key often sufficient

« Example: ECDSA key protecting Bitcoin deposit
» New security notions covering 2 secret key extraction

+ for honest and malicious keys
Most applications

- Polynomial address space sufficient



Construction
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Shamir Secret Sharing

f(X) = pax + sks

- One point reveals nothing about sky
- Two points allow to recover sks
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Generic DAPS: Wrap Up

Generic approach:
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Generic DAPS: Wrap Up

Generic approach:

use of X
+ of X secret key

+ Sharing polynomial determined by address

f(X) = pax + sks

- Evaluate verification relation in encrypted domain

- Zero-knowledge proof of consistency

Can prove unforgeability via unforgeability of = ( )
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Generic DAPS: Wrap Up (cont)

+ For example, applies to , ,
+ DAPS signatures
+ Public key linear in size of address space

(contains encrypted sharing polynomials per address)
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Generic DAPS: Wrap Up (cont)

+ For example, applies to , ,
+ DAPS signatures
+ Public key linear in size of address space

(contains encrypted sharing polynomials per address)
+ Extendable to

» Use degree N — 1 sharing polynomial

1



Implementation

- Easy extension of existing implementations
+ Implement secret sharing
+ Implement consistency proof

« We provide implementation in OpenSSL
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Implementation

- Easy extension of existing implementations
+ Implement secret sharing
+ Implement consistency proof

« We provide implementation in OpenSSL

Scheme Sign  Verify sk [pk| lo|

[ms] [ms] [bits] [bits] [bits]
ECDSA-DAPS (s) 0.76 133 256-(1+2n) 514-(1+n) 1280
ECDSA-DAPS (p) 023 035 256-(1+2n) 514-(1+n) 1280
ECDSA (s) 0.09  0.35 256 257 512
ECDSA (p) 0.06 0.21 256 257 512

Table 1: Runtime and sizes; secp256k1 (s), prime256v1 (p)
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Contribution

« Generic construction
« Can extend virtually all DLOG-based signature schemes
« Focus on extraction of underlying signature scheme key
« Shortest black-box DAPS

(slightly weaker, yet very reasonable model)

« Extendable to N-authentication preventing signatures
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Conclusion

Contribution

« Generic construction
« Can extend virtually all DLOG-based signature schemes
« Focus on extraction of underlying signature scheme key
« Shortest black-box DAPS

(slightly weaker, yet very reasonable model)

« Extendable to N-authentication preventing signatures
Follow-up work [Poe18]
- Even shorter DAPS ( )
Future work
- Reduce public key overhead per address
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Questions?

Implementation: https://github.com/IAIK/daps-dl

N
A [

Supported by: prisma cleud
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https://github.com/IAIK/daps-dl
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