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Abstract. Public key infrastructure (PKI) based on certificate author-
ities is one of the cornerstones of secure communication over the inter-
net. Certificates issued as part of this PKI provide authentication of web
servers among others. Yet, the PKI ecosystem is susceptible to certificate
misissuance and misuse attacks. To prevent those attacks, Certificate
Transparency (CT) facilitates auditing of issued certificates and detect-
ing certificates issued without authorization. Users that want to verify
inclusion of certificates on CT log servers contact the CT server directly
to retrieve inclusion proofs. This direct contact with the log server creates
a privacy problem since the users’ browsing activities could be recorded
by the log server owner.

Lueks and Goldberg (FC 2015) suggested the use of Private Informa-
tion Retrieval (PIR) in order to protect the users’ privacy in the CT
ecosystem. With the immense amount of certificates included on CT log
servers, their approach runs into performance issues, however. Neverthe-
less, we build on this approach and extend it using multi-tier Merkle
trees, and render it practical using multi-server PIR protocols based on
distributed point functions (DPFs). Our approach leads to a scalable
design suitable to handle the increasing number of certificates and is, in
addition, generic allowing instantiations using secure accumulators and
PIRs.

We implement and test this mechanism for privacy-preserving member-
ship proof retrieval and show that it can be integrated without disrupt-
ing existing CT infrastructure. Most importantly, even for larger CT logs
containing 23! certificates, our approach using sub-accumulators can pro-
vide privacy with a performance overhead of less than 9 milliseconds in
total.
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1 Introduction

Nowadays Transport Layer Security (TLS) [Res18] is the de-factor standard for
secure communication over the internet. In general, TLS enables two parties—a
client and a server—to agree on a shared secret key which can then be used
to encrypt payload data. During the handshake that is responsible to perform
the key agreement, the client most commonly verifies the server’s identity based
on the server’s X.509 certificate [CSFT08] issued by some trusted certificate
authority (CA). However, in the standard certificate ecosystem, there is still
room for misuse, as multiple certificates may be issued for the same domain
name. The most prominent examples of such incidents include CAs like Comodo*
or DigiNotar? issuing certificates for, among others, subdomains of google.com.
In the latter case of DigiNotar, these fraudulent certificates were used for man-
in-the-middle attacks against users.

To this end, countermeasures like Certificate Transparency (CT) [Laul4, LLK13,
DGHS16] have received a lot of attention recently. In CT, all issued TLS cer-
tificates are publicly logged. Its goal is to allow any party to audit the public
log and find suspicious certificates or check the integrity of the log itself. The
ultimate goal of CT is to eventually have clients refuse connections for certifi-
cates that are not included in a public log. Google began enforcing this policy
for certificates issued after April 20183 in its browser. Also, other big browser
vendors such as Apple and Mozilla are in the process of enforcing this policy.

In a logging system, web clients need to ensure that log servers do not hand out
promises of certificate inclusion in the log without actually doing so. To combat
misbehaving log servers, web clients act as auditors, verifying that any certifi-
cates they received are actually publicly logged. Although this is an important
role, it has negative privacy implications for clients performing such an auditing
role, as verifying the inclusion of a certificate reveals the browsing behavior of
the client to the log server.

1.1 Overview of the Certificate Transparency Ecosystem

Certificate Transparency is a large ecosystem with many participants. First,
there are so-called submitters, who submit certificates or precertificates® to the
log server and receive a Signed Certificate Timestamp (SCT). An SCT is a log
server’s promise that the certificate it was issued for will be included in the log

! https://www.comodo. com/Comodo-Fraud-Incident-2011-03-23.html

2 https://security.googleblog.com/2011/08/update-on-attempted-man-in-
middle.html

3 https://www.section.io/blog/chrome-ct-compliance/

4 Precertificates are certificates provided to the log before the issuance of the actual
certificate. They contain a special critical poison extension that renders the certifi-
cate unusable in TLS connections.
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server after a particular time period called Maximum Merge Delay (MMD). This
SCT is then either directly included in the certificate or exchanged with a web
client during the TLS handshake. Submitters are usually CAs, but, in general,
anyone can submit certificates to the log server.

Log servers receive certificate chains and issue SCTs for them. They add those
chains (together with the respective SCTs) to a data structure which allows to
store elements and to later produce succinct witnesses to attest the membership
of certain values within this data structure. Conceptually, such a data structure
realizes what is formalized by cryptographic accumulators (see [DHS15] for an
overview). Technically, it is realized using Merkle trees [Mer89].

The role of monitors is to watch the log servers and audit their behavior by
verifying the validity and consistency of the accumulator over time. Monitors
also can check for misissued certificates and alert domain owners when they
detect a potentially malicious certificate in the log.

Finally, there are so-called auditors, who verify the SCTs’ signature and check
that the accompanying certificate is present in the log by requesting a witness
attesting their membership in the accumulator and verifying it against the cur-
rent accumulator value. They additionally can request a proof of consistency
with respect to changes in the accumulator over time. An auditor is an essential
part of a TLS client, but it could also be a secondary function of a monitor.
Auditors built into TLS clients do not necessarily perform this inclusion checks
in real time when visiting a website; usually, only the SCT signatures are ver-
ified against the public keys of trusted log servers. The Merkle-tree inclusion
proofs are then retrieved asynchronously at a later time to audit if the log server
is well-behaved. Chromium-based browsers already have a built-in component
that validate SCTs by sending them to a Google resolver that validates inclu-
sion proofs. A misbehaving log server, issuing SCTs for certificates that are not
logged by the server, will then get reported to big browser vendors and will
subsequently be removed from the list of trusted log servers.

Current State of the Certificate Transparency Ecosystem Due to the
efforts of big browser vendors, especially Google, the CT ecosystem is growing
rapidly. As of August 2018, several of the big CT log servers (e.g., Google Argon)
have more than 250 million certificates in their log. Even the smaller log servers
have more than 10 million active certificates, with a certificate issuance rate of ~
53000 new certificates per hour. Two months later (October, 2018), the certificate
issuance rate jumped to = 105000 new certificates per hour and several of the
big CT log servers (e.g., Google Argon) have more than 400 million certificates
in their log servers. Cloudflare’s CT statistics website® publishes live statistics
about the current state of CT log servers.

® https://merkle.town/
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A big factor in these numbers is the growing popularity of Let’s Encrypt,® a
free, automated certificate authority that accounts for more than 72% of all
certificates in CT logs (cf. Table 1) This huge number of certificates makes the
use of simple privacy-preserving techniques, such as simply downloading the full
log, impossible in practice.

Root CA Certificates Percentage
DigiCert 64,226,041 5%
Let’s Encrypt 941,016,262 72%
Sectigo 246,484,842 19%
Other 62,114,615 5%

Table 1. Number of certificates per CAs tracked as part of CT. Numbers are based
on data from https://merkle.town as of April 8th, 2019.

1.2 Privacy Challenges with CT

The auditors’ role in CT is essential because they verify that a log server did
not issue an SCT for a certificate that is not included in the public log after the
MMD. However, this vital process of auditing SCTs in CT can violate a user’s
privacy if the auditor is, e.g., a TLS client.

The CT auditor checks that the corresponding certificate of each valid SCT is
included in the log server. This is done by requesting a membership proof for
the certificate hash from the log server and verifying it against the accumulator
value (the Signed Tree Hash (STH)) of the log server. The downside to this
approach is that it reveals the browsing behavior of the specific auditor (which
is usually a TLS client) to the log server because having a particular SCT means
that the auditor visited this website. A malicious log server can choose to record
this browsing behavior and sell this browsing history to interested third parties,
like advertising agencies.

On the other hand, the privacy problem stated above can also weaken the in-
tegrity of the CT ecosystem, since TLS clients are discouraged to audit sites
which they may not want to be associated with, e.g., sites of political, religious
or sexual nature. In turn, if no-one is auditing the validity of SCTs for these
certificates, they can more likely become targets for adversaries, as they could
convince a malicious log server to issue an SCT for a malicious certificate and
not include it into its log. If a potential victim of a man-in-the-middle attack
using this malicious certificate is not likely to audit the SCT because he does not

S https://letsencrypt.org/
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want his browsing behavior known, this attack is much more likely to succeed
unnoticed.

Furthermore, the privacy problem is transferred to applications or protocols that
use CT as a basis or follow the same architectural design. One such application
is DECIM [YRC18], which aims to detect the compromise of endpoints in mes-
saging scenarios. DECIM provides a key management protocol based on CT and
enables users to refresh and manage keys in a transparent manner. Users of this
system query keys from log servers and can thereby leak their communication
partners. Thus, the authors of DECIM suggest the use of spoof queries over an
anonymous channel such as Tor to hide the actual user queries from the log
servers. OQur proposed solutions can also be directly applied to DECIM.

1.3 Owur Contribution

In this work, we tackle the privacy issues within the Certificate Transparency
ecosystem. Our contributions are as follows:

— We build on top of Lueks and Goldberg’s approach [LG15] for privacy-
preserving retrieval of inclusion proofs from CT log servers. To achieve pri-
vacy there, clients fetch inclusion proofs using a multi-server private infor-
mation retrieval (PIR) protocol. We, however, present a more scalable design
for logging a huge number of certificates, which allows us to include small
static partial inclusion proofs in an SCT, a server’s certificate or as a TLS
extension. The client can then check the inclusion based on the partial proof
and by fetching the missing parts of the proof using a PIR-based approach.

— We verify the practicality of our approach by extending Google’s CT log
server implementation and performing experiments on realistic log server
sizes. Even without using the approach of sub-trees, we report practical per-
formance numbers and improve both runtime and communication compared
to previous approaches. For our multi-tier approach, we report a client run-
time overhead of less than a millisecond in total, a server runtime overhead
of less than 9 milliseconds, and total communication overhead of around 7
KB for 23! certificates when using hourly sub-trees, and even below 1 mil-
liseconds for clients and servers for sub-trees accumulating certificates per
minute.

Specifically, our goal is to tackle the privacy issue without any changes to the
TLS server side to ease the possibility of a fast deployment. In our approach,
we split the Merkle tree containing all certificates into multiple tiers of smaller
Merkle trees where the trees at the bottom contain certificates. This split can,
for example, be based on a parameterizable time interval or a maximum number
of certificates. The sub-trees, respectively their roots, are then combined into
the larger tree containing all certificates. This separation of the certificates into
smaller sub-trees then allows us to embed membership proofs concerning the
sub-trees in an extension field of the SCT or as an X.509v3 extension [CSFT08]



into the certificate itself. As the height of the larger tree is now considerably
smaller than a single tree containing all certificates, the approach by Lueks and
Goldberg [LG15] using PIR to fetch the membership proofs, becomes practical
again.

We formalize our approach in more general terms using accumulators and sub-
accumulators, where we consider the smaller sub-trees as accumulators and then
the full tree as an accumulator of accumulators. Using this abstraction, we dis-
cuss different types of accumulators including Merkle-tree accumulators as well
as RSA and bilinear pairing based ones in terms of their performance character-
istics as well as their consequences on the security on the CT ecosystem.

Additionally, we use a different two-server PIR solution as an alternative to the
PIR scheme used by Lueks and Goldberg. We make use of the work on distributed
point functions by Gilboa and Ishai [GI14] to build an efficient two-party compu-
tationally secure PIR system and present a highly performant implementation.
For this, the client needs to know the index ¢ of the item it wants to retrieve in
the database. At the moment, there no such index exists in the SCTs that are
returned by the log server. Therefore, we propose to include such an index in
the CtExtensions field of an SCT. Alternatively, this static piece of information
can also be included in a TLS extension.

Finally, our approach is general and can also be applied to other systems based on
CT-like architectures. In particular, it could be used to replace the spoof queries
over Tor as proposed in DECIM for hiding a user’s communication partners.

1.4 Related Work

Different approaches have been proposed to solve various privacy issues in the
context of CT, and we discuss some of them below as well as known privacy-
preserving techniques.

Tor [DMS04] and AN.ON [BFKO00], two open and privacy-enhancing networks
can provide the needed infrastructure to solve the privacy problem in CT. In
both networks, the client requesting an inclusion proof is anonymous through a
series of complex routing mechanisms. However, Tor suffers from unpredictable
performance and AN.ON has limited bandwidth and has no load balancing mech-
anisms [WHFO07].

Another suggestion allows the clients to receive the inclusion proofs using special
DNS records through their DNS resolvers [Laul6]. In this case, the log server
operates DNS name servers which serve authoritative answers to special queries
from web clients. One of the pitfalls [Mes17] of this approach is that the browsing
history is still observable since DNS requests are mostly sent in plaintext over
UDP.

The draft of version 2 of the CT RFC [LLK"18] discusses the privacy issues
in CT and presents three mechanisms to retrieve the Merkle inclusion proofs



in a privacy-preserving way. The first mechanism involves a new TLS extension
where the TLS servers send the inclusion proofs and SCTs in the process of com-
munication with the client. The inclusion proofs and the SCTs can be updated
on the fly in this case. This approach puts additional load on the server, i.e., the
server has to continually update the inclusion proofs it has in storage. The second
mechanism involves the Online Certificate Status Protocol (OCSP) [SMAT13]. A
user contacts the OCSP service of a certificate authority to check whether a cer-
tificate was revoked, thus leaking the browsing behavior to the CA. The OCSP
can also be used in this manner to deliver inclusion proofs to the client. How-
ever, OCSP does not solve the privacy problem but simply shifts the information
leakage to a certificate authority. OCSP stapling [I1I11], which was initially de-
signed to offload computational costs to the servers, also helps to address privacy
issues, since the client no longer needs to contact the CA themselves, but veri-
fies the time-stamped OCSP response appended by the server to the initial TLS
handshake. The OCSP stapling approach also adds additional load on the server
because the time-stamped OCSP response has to be continuously changed and
updated. The final mechanism involves adding the inclusion proofs and the SCT's
directly as an X509v3 certificate extension. This extension can not regularly be
updated, and while it provides privacy, it quickly de-synchronizes with the log
servers.

Lueks and Goldberg [LG15] propose to store membership proofs in a PIR database
optimized for multi-user queries. The database stores a record containing the

membership proof for each certificate; thus for storing 2¢ certificates, the database
is required to store £ - 2¢ hashes. For log servers storing a million of certificates,

the performance is reasonable; however, current CT log servers contain a hun-

dred times more certificates than assumed by Lueks and Goldberg, rendering

their approach impracticable.

Eskandarian et al. [EMBB17] address another privacy issue, which is not the
focus of this work. In case a misbehaving log server is identified, an auditor is
required to publish the offending SCT to indicate the log server’s misbehavior.
Naturally, the incident together with the SCT would then be reported to browser
vendors managing the list of trusted log servers. However, this again leaks the
client’s browsing behavior to a third party. Eskandarian et al. tackle this issue
by constructing zero-knowledge proofs of exclusion, proving that an SCT has
been excluded from a log whereas the verifier only learns that an entry has been
excluded. Their techniques fundamentally rely on efficient proofs of knowledge
of signatures together with suitable signature schemes for signing timestamps.

A recent proposal [NGR18] addresses the issues related to gossiping in Certificate
Transparency. Gossiping is the sharing of information about log servers between
clients. The authors propose three protocols for gossiping SCTs and Signed Tree
Heads (STHs) amongst web clients. The protocols necessitate the exchange of
sensitive information that can be used to aggregate network activities of different
clients or track clients across different origins. The authors proposed measures
to ensure that the possibility of such a privacy breach is minimal. However, the



protocols and the privacy measures of this draft focus primarily on the gossiping
protocols and do not address the privacy concerns that come with the fetching
of inclusion proofs.

Demmler et al. [DRRT18] use a PIR based on distributed point functions (DPF)
to construct a multi-server private set-intersection protocol optimized for unbal-
anced set sizes. In addition to a performant implementation, they also touch on
deployment considerations, which we also discuss in Section 5.4.

Splinter [WYG™17], a system built on Function Secret Sharing and DPFs, pro-
vides privacy for users querying a public database. The query from a user is
split and sent to multiple servers that have a copy of the same data. Splinter
cannot only retrieve data in a PIR-like fashion but also enables a user to com-
pute functions such as MAX or TOPK over ranges of the public data without
non-colluding servers learning any information about the query.

A different approach to PIR is called oblivious RAM (ORAM), where a client can
read and write to a database stored on a server without the server learning about
the location or content of the reads and writes. The original work of Goldreich
[Gol87] has spawned an extensive line of work for different ORAM constructions
and improvements, a recent example being [SvDST18]. However, while ORAM is
a more powerful primitive than PIR, it is not well suited for the scenario of CT,
since the database is read-only and public, with many different clients wanting
to retrieve data.

A different line of work investigates privacy-preserving key directories, which are
similar to the logging infrastructure used in CT but additionally hide the con-
tents of the key directory. Examples of such systems include CONIKS [MBB*15],
EthIKS [Bon16], Catena [TD17], and the generalization of Verifiable Key Direc-
tories by Chase et al. [CDG18].

2 Preliminaries

In this section, we introduce cryptographic primitives and constructions that
we subsequently use as building blocks. Notation-wise, let [n] := {1,...,n} for
n € N. For an algorithm A, we write A(- - - ;) to make the random coins explicit.
We say that an algorithm is efficient, if it runs in probabilistic polynomial time
(PPT).

2.1 Accumulators

We rely on the formalization of accumulators by Derler et al. [DHS15]. Based
on this formalization, we then state the Merkle tree, the RSA, and the bilinear
accumulators within this framework. We start with the definition of a static
accumulator.



Definition 1 (Static Accumulator). A static accumulator is a tuple of effi-
cient algorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1%,t): This algorithm takes a security parameter k and a parameter t. If
t # oo, then t is an upper bound on the number of elements to be accumu-
lated. It returns a key pair (ska, pkp), where skn = 0 if no trapdoor ezists.
We assume that the accumulator public key pk, implicitly defines the accu-
mulation domain Dp.

Eval((ska, pkp), X): This algorithm takes a key pair (ska,pk,) and a set X to
be accumulated and returns an accumulator Ny together with some auziliary
information aux.

WitCreate((ska, pkp ), Ax,aux, x;): This algorithm takes a key pair (ska, pky), an
accumulator Nx, auziliary information aux and a value x;. It returns L, if
xz; ¢ X, and a witness wit,, for x; otherwise.

Verify(pkp, Ax, Wity , ;) This algorithm takes a public key pky, an accumulator
Ax, a witness wity, and a value x;. It returns 1 if wity, is a witness for
z; € X and 0 otherwise.

We now define a dynamic accumulator, but adapt it to our use-case. We only
allow additions of elements to the accumulator.

Definition 2 (Dynamic Accumulator). A dynamic accumulator is a static
accumulator with an additional tuple of efficient algorithms (Add, WitUpdate)
which are defined as follows:

Add((ska, pkp), Ax,aux,x): This deterministic algorithm takes a key pair (ska,
pka), an accumulator Ny, auziliary information aux, as well as an element
x to be added. If x € X, it returns L. Otherwise, it returns the updated
accumulator Ny with X' + X U {z} and updated auziliary information

aux’.

WitUpdate((ska, pkp), Wity , aux, z): This algorithm takes a key pair (ska, pkp),
a witness wity, to be updated, auziliary information aux and an x which was
added to the accumulator. It returns an updated witness Wit;i on success and
1 otherwise.

Note that the formalization of accumulators by Derler et al. gives access to a
trapdoor if it exists. Giving those algorithms access to the trapdoor can often be
beneficial performance-wise, but requires additional trust assumptions. We will
discuss the consequences for instantiating our schemes in Section 3.3.

Finally, we recall the notion of collision freeness:

Definition 3 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function (-) such that:

(skn, pkp) <= Gen(1%,t),  Verify(pky, A", wit, ,z;) = 1

Pr (wit},,, a7, X*) + A (pky) N g x| S e(k),



where N* <— Eval,« ((ska, pkp), X*) and the adversary gets access to the orcales
O = {Eval((ska, pkp), -), WitCreate((ska, pkp), -, ) }
and, if the accumulator is dynamic, additionally to

{Add((Sk/\7 pk/\)7 Ty ')a WItUpdate((Sk/\a pk/\)? 7y )}

2.2 Merkle-tree Accumulator

In Scheme 1, we cast the Merkle-tree accumulator in the framework of [DHS15].
Correctness can easily be verified. We restate the well-known fact that this ac-

Gen(1”,¢): Fix a family of hash functions { Hy }reks with Hy : {0,1}* — {0,1}" V k €
K”. Choose k <~ K" and return (ska, pk,) < (0, Hy).

Eval((ska, pky), X): Parse pky as Hy and X as (o, ..., Tn_1). If # k € Nso that n = 2F
return L. Otherwise, let ¢, . refer to the u-th leaf (the leftmost leaf is indexed by
0) in the v-th layer (the root is indexed by 0) of a perfect binary tree. Return
Ax < £o,0 and aux < ((lu,v)e[n/ok—v))velr], Where

) - Hk(£2u,v+l||‘€2u+1,v+1) ifv< k, and
w Hk(:vz) ifv==k.

WitCreate((ska, pky), Ax,aux, z;): Parse aux as (({u,v)ye[n ok~ )velr) and return witg,
where

1 if [i/2v] (mod 2)=0

Wite; < (€1i/2v | 4n,k—v)o<u<k, Wheren = { —1 otherwise.

Verify(pkp, Ax, wits,, z;): Parse pk, as Hy, Ax as Lo, set €; x < Hp(z;). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

A = [ HRCparpol |l 1 6-0) A [/20] - (mod 2) =0
Li/2v T2 ] k—(v+1) Hk‘(ELi/ZI’J*1,k7v||£Li/2UJ,k7'U) otherwise.

Scheme 1: Merkle-tree accumulator.

cumulator is collision free.

Lemma 1. If {Hg}rek is a family of collision resistant hash functions, the
static accumulator in Scheme 1 is collision free.

In the current CT log server implementation, Hy, is instantiated using SHA-256.
Also, in practical instantiation, the requirement that Eval only works on sets of
a size that is a power of 2 can be dropped. It is always possible to repeat the
last element until the tree is of the correct size.

10




2.3 Dynamic Public-Key Accumulators

Besides hash based-based constructions, major lines of work investigated ac-
cumulators in the hidden order groups, i.e. RSA-based, and the known order
groups, i.e. discete logarithm-based, setting. The first collision-free RSA-based
accumulator is due to Bari¢ and Pfitzmann [BP97]. The accumulator in this
construction consists of a generator raised to the product of all elements of the
set. Then witnesses essentially consist of the same value skipping the respective
elements in the product. Thereby, the witness can easily be verified by raising
the power of the withness to the element and checking if result matches the accu-
mulator. We recall the RSA-based accumulator in Scheme 2. Note however, that
we define WitCreate in a way that does not require the factorization of N, i.e.
no secret key is required. Correctness can easily verified, and collision freeness

Gen(1”,¢): Fix a hash functions H with H : {0,1}* — P. Choose an RSA modulus
N = p- g with two large safe primes p, ¢, and let g be a random quadratic residue
mod N. Set sky « @ and pk, « (N, g, H)

Eval((ska, pky), X): Parse pky as (N, g, H). Return Ay « glleex 7@ mod N and

aux « X. ,
WitCreate((ska, pkp), Ax,aux, z): Return wit, < gllerexnizy 1@ mod N,
Verify(pkp, Ax, wity, x): Parse pk, as (N, g, H). If wit? ™ = Ax mod N holds, return

1, otherwise return 0.
Add((ska, pky), Ax,aux,z): Parse pk, as (N, g, H) and aux as X. Set X' + X U {z},

aux’ + X', and Ay/ + /\gfz> mod N. Return Ay, and aux’.
WitUpdate((ska, pky), wite,, aux, ) : Parse pk, as (IV, g, H). Return Witg(z) mod N.

Scheme 2: RSA-based accumulator.

follows from the strong RSA assumption:

Lemma 2 ([BP97]). If the strong RSA assumption holds, Scheme 2 is collision-
free.

Additionally, we recall the t-SDH-based accumulator from Nguyen [Ngu05]. The
idea here is to encode the accumulated elements in a polynomial. This poly-
nomial is then evaluated for a fixed element and the result is randomized to
obtain the accumulator. Similar to the RSA-based accumulator, a witness con-
sists of the evaluation of the same polynomial with the term corresponding to
the respective element cancelled out. For verification a pairing is used to check
whether the polynomial encoded in the witness is a factor of the one encoded
in the accumulator. The scheme is depicted in Scheme 3. Again we define the
accumulator in a way that no secret key, i.e. s, is required. Correctness is again
obvious, whereas collision freeness follows from the ¢-SDH assumption:

11




Gen(1%,t): Let G be a prime order group p generated by g with a bilinear map e :
G x G — Gr. Choose s € Zj, and return ska < 0 and pk, <+ (G,e, (g°")i o).

Eval((ska, pks), X): Parse pk, as (G,e,(g°)!_y) and X as subset of Z,. Expand
the polynomial [, v(z + X) = > a: X", choose 7 & 7% and return Ay
(T17, ¢°)*)" and aux < (r, X).

WitCreate((ska, pky), Ax,aux,z): Parse aux as (r,X), run (witg,...) —
Eval((ska, pkp), &\ {x}; r), and return wit,.

Verify(pky, Ax, wit,, z): Parse pk, as (G, e, (¢° )i—o). If e(Ax, g) = e(wits, g°-g°) holds,
return 1, otherwise return 0.

Add((skn, pkp), Ax,aux,z): Parse pk, and aux as (r, X). Set X’ +— X U {z} and return
Eval((ska, pkp), Ax,aux, X;7).

WitUpdate((skn, pky), witz,, aux, ) : Return Axwity, “%.

Scheme 3: t-SDH-based accumulator.

Lemma 3 ([Ngu05]). If the t-SDH assumption holds, Scheme 3 is collision-
free.

2.4 Distributed Point Functions

Distributed Point Functions (DPFs) were introduced by Gilboa and Ishai [GI14]
and later generalized and improved by Boyle, Gilboa, and Ishai [BGI15, BGI16]
in a concept called Function Secret Sharing (FSS). A point function P, , is a
function defined for z,y € {0,1}*, so that

Y ife/ =
P, () =
w(@) {0|y otherwise.

A DPF is a keyed function family Fj, where given x,y we can generate n
keyshares (ko,k1,...,k,) so that Y. Fy, = P, and F}, completely hides
x and y. We focus on the case of two parties because efficient DPF constructions
exist for n = 2, where the sizes of the key-shares k; are logarithmic in the domain
of the DPF input, whereas the best generic multi-party construction of DPF's
have key-share sizes in the order of the square root of the domain.

The interface of a DPF is given as a tuple of functions (DPF.Gen, DPF.Eval)
in [BGI16], and is defined for general y, however for our use, we restrict it to
y = 1. We also fix the number of parties to two, and then use AES as an
efficiently computatble PRF, as suggested by [BGI16]. In the following, N refers
to the domain of the DPF. We describe the interface in the following:

DPF.Gen(z): Given an index = € [N], this algorithm returns a key pair (ko, k1).

DPF.Eval(ky): Given a key kp, which is the result of a previous call to DPF.Gen(x),
this algorithm produces a keystream K}, of length N. Given Ky = DPF.Eval(kg)
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and K; = DPF.Eval(ky),

(Ko ® K1)[2'] = {1 o =z

0 otherwise.

2.5 Private Information Retrieval

Private Information Retrieval (PIR) is a primitive originally introduced by Chor
et al. [CKGS98], that allows a client to retrieve an item from a server database
without the server learning anything about the item requested. The server’s
privacy is not a concern in PIR schemes, and the database may even be public,
only the client’s query is considered private.

Computational PIR is a flavor of PIR where the client’s query is hidden from a
polynomially bounded server. Such PIR schemes can, for example, be built from
fully homomorphic encryption (FHE). Information-theoretic PIR protects the
client’s query even against a computationally unbounded server. Such schemes
usually rely on multiple non-colluding servers to provide such strong privacy
guarantees and usually offer more performance than single-server PIR schemes.
Since the introduction of PIR in the 1990s by Chor et al. many works have
improved the communication and computational complexity of PIR schemes, for
example [DHS14, ACLS18, GCM ™16, MBFK16, Gol07, DGH12, BS07, LG15].

An efficient 2-server computational PIR scheme can be constructed from DPF's
in a straight-forward way as shown in [GI14]. Before we discuss the instantiation,
we recall their definition of a private information retrieval (PIR) protocol:

Definition 4 (2-server PIR). A 2-server PIR protocol involving two servers
So,S1 holding the same n—bit database z and a user consists of three algorithms
(Q,A, M) with query domain Dg and answer domain D4 and are defined as
follows:

Q(n,1): On input of an index i, client returns queries (qo,q1) € Dé.
A(z,q): On input of a query q and a database z, server b returns an answer ay.
M(i,ag,a1): Ininput of an index i and two answers ag, ay, recovers and returns

the i-th database entry z;.

We note that [GI14, Definition 2] explicitly handless random coins, but we simply
omit them for the sake of brevity.

Definition 5 (Correctness). A 2-server PIR scheme is correct if for every
n €N, every z € {0,1}" and every i € [n], it holds that

Pr [(go. q1) + Q(n,i): M(3, (A(J, 2, ;) jeqo,1y) = 2] = 1.
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Definition 6 (Computational Secrecy). Let Dy iogn1,i b € 0,1,n € N and
i € [n] denote the probability distribution on q, induced by Q. A 2-server PIR
scheme provides computational secrecy if there exists a PPT algorithm Sim such
that the following two distributions

{Smm(b, [logn]) }oeqo,13,nen and { Dy flogn],i }be{0,1},neN,icn]

are computationally indistinguishable.

We now give a short intuition of a 2-server PIR construction from a DPF. There,
the client calls (ko, k1) <= DPF.Gen(q) and sends kg to server 0 and k; to server
1. Both servers 0 and 1 call K; <— DPF.Eval(k;) and perform an inner product
between the expanded keystream and the database items, X; = @;\Lo K[l -
DBJl]. The servers finally return Xy and X; to the client who can recover the
requested item x4, = Xy @ X;. The correctness of this PIR scheme follows from
the correctness of the used DPF scheme. The privacy of the PIR scheme follows
from the privacy of the used DPF scheme ([GI14, Theorem 2]), but requires that
the two servers do not collude.

3 Modeling Append-Only Logs and Membership Proofs
for CT

In this section, we give a model of the append-only” log functionality that is
used in the CT ecosystem. We then extend the append-only log by also allowing
for privacy-preserving membership proofs.

3.1 Append-Only Logs

An append-only log has to provide several functionalities: (i) adding new items,
(ii) proving membership of a item in the log, (iii) proving consistency of the
append-only property between two versions of the log. We closely model append-
only logs on the definition of accumulators, but take care of the interactive
nature. In the following, we define the syntax of the append-only log protocol
between a client and a server closely resembling the CT protocol.

Definition 7 (Append-Only Log). An append-only log is an interactive pro-
tocol of a global Setup algorithm, a client with algorithms VerifyMember and a
server with algorithms (Append, GetAcc, ProveMember) which are defined as fol-
lows:

7 Although the generalized functionality might be more accurately called “add-only”,
since the order of the elements is not preserved in general, we choose to go with
“append-only”, since it is consistent with the terminology used, e.g., by the Certifi-
cate Transparency RFC [LLK13].
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Setup(1%,t): This algorithm takes a security parameter k& and a parameter t. If
t # oo, thent is an upper bound on the number of elements to be accumulated
in the log. It returns public parameters pp.8

Append(z;): This algorithm takes new item x; and appends it to the log.

GetAcc(): This algorithm returns the current log accumulator value Ny to the
client.

ProveMember(x;): This algorithm value x;. It returns L, if x; ¢ X, and a wit-
ness wity, for x; otherwise.

VerifyMember(Ax, wit,,, z;): This algorithm takes an accumulator Ny, a witness
wity, and a value x;. It returns 1 if wity, is a witness for x; € X and 0
otherwise.

The server starts off with an initially empty log. Optionally, a server can provide
an additional algorithm Gen and the client an additional algorithm VerifyAcc
defined as follows:

Gen(): This algorithm generates a secret signing key sk and a verification key
pk.

VerifyAcc(pk, Ax,0): This algorithm takes the server public key pk, an accumu-
lator Ny, a signature on the accumulator o. It returns 1 if o is valid, and 0
otherwise.

It these two algorithms are available, GetAcc additionally returns a signature on
the accumulator.

The additional algorithms Gen and VerifyAcc provide the functionality of signed
tree head, i.e., Gen creates the signing key material on the server side and
VerifyAcc verifies the signature on the accumulator.

For correctness of the log, we require that for every k € N, pp + Setup(1”,t),
that for every x appended to the log using Append(x), for all A < GetAcc(), it
holds that

VerifyMember(A, ProveMember(z), z) = 1.

This essentially captures that the membership proof for every element added
to the log can be verified. If the append-only log also provides the optional
algorithms Gen and VerifyAcc, then we additionally require for correctness, that
for all (sk, pk) «+— Gen() and all (A, o) < GetAcc(), it also holds that

VerifyAcc(pk,\,0) = 1.

A variant of the append-only log is one with privacy-preserving membership
proofs, which allow a client to retrieve a membership proof for a certain item
without the server learning the item for which the proof was requested. This

8 We assume that these public parameters are available implicitly in all algorithms.
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property is useful in many applications such as CT, where it allows a client to
hide its browsing behavior from the log server.

Definition 8 (Append-Only Log with Privacy-Preserving Membership
Proofs). The append-only log with privacy-preserving membership proofs addi-
tionally extends Definition 7 with algorithms (PMQuery, PMReconstruct) for the
client the server with PMAnswer algorithm which are defined as follows:

PMQuery(z;,4,n): This algorithm takes an item x; with its corresponding index
i and returns queries (q;)je[n) for n servers.

PMAnswer(j, q;): This algorithm takes a query q; for the j-th servers and returns
an answer a;.

PMReconstruct(i, (a;) jem)): Given answers (a;);ein) for index i, it reconstructs
the witness wity, .

The client may use n servers to request membership proofs.

The proof returned by PMReconstruct can be verified as normal using VerifyMember.
While the algorithms in this definition are closely modeled after those of PIR
protocols, we note that this does not necessarily restrict instantiations to PIR
based ones.

For correctness, we require first of all, that it satisfies the correctness of append-
only logs. Additionally, we require that for all items x append to the log with
their corresponding index ¢ and n servers, for all A + GetAcc(), it holds that

VerifyMember(A, PMReconstruct(i, (a;) jcn))) = 1

where
a; < PMAnswer(j, PMQuery(x;,i,n)) for j € [n].

Thereby we ensure that reconstructed witness verify. This definition allows the
clients to contact multiple servers to obtain the membership proof. In the fol-
lowing, we will focus on the case n = 2.

Finally, we discuss the security notions. However, since our main concern are
privacy issues, we only discuss the first two properties briefly. Inspired by an
accumulator’s collision freeness, the append-only log is collision-free if servers
can only produce witnesses for elements that were included in the accumulator.
Secondly, we require that adversaries cannot forge signatures on accumulators,
i.e. that the append-only log is unforgeable. The third notion is geared towards
the client’s privacy when requesting proofs for logged elements and ensures that
the queries do not leak any information on the queried elements. More formally,
we define it in the same vein as computational secrecy of PIRs (cf. Definition 6):

Definition 9 (Computational Secrecy). Let Dy riog n1,i,0 € {0,1},n € N
and i € [n] denote the probability distribution on q, induced by PMQuery. An
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append-only log scheme provides computational secrecy if there exists a PPT
algorithm Sim such that the following two distributions

{SIM(ba “Og nW)}bE{O,l},neN and {Db,[log'rﬂ,i}bE{O,l},neN,ie[n]

are computationally indistinguishable.

3.2 CT as Append-Only Log

We now show that the existing CT logging ecosystem implements an append-
only log according to Definition 7. It also provides the optional algorithms based
on signature schemes, which we formally recall in Appendix B. We note that

Let MT be a Merkle-tree accumulator, X be a signature scheme, and let X < @) be
the initially empty log on the server.

Setup(1”,¢): Call (ska, pky) < MT.Gen(1%,t), set pp < (17,¢, pk,), and return pp.

Gen(): Return (skz, pky;) < X.Gen(1%).

Append(z;): Set X < X U {z;}, and update the internal state of the accumulator
(A, aux) < MT.AdA((0, pky), A, aux, x;) or (A,aux) < MT.Eval((0, pk,), A, aux, z;)
if x; is the first element appended.

GetAcc(): Set o = X.Sign(skx, A) and return (A, o).

VerifyAcc(pks;, A, 0): : Return X . Verify(pky, A, o).

ProveMember(z;): Return MT.WitCreate((0, pky), A, aux, x;).

VerifyMember (A, witz,, z;): Return MT.Verify(pky, A, witz,, ;).

Scheme 4: Certificate Transparency Logging as append-only log.

Scheme 4 uses a yet undefined algorithm of the Merkle-tree, namely MT.Add,
yet no function to update witnesses is used. Especially if UpdateWitness is not
defined to achieve a dynamic accumulator, Add is easily implemented by simply
recomputing the accumulator value.

As the correctness, collision freeness and unforgeability are straight-forward to
check for Scheme 4, we only give a sketch of the proof:

Lemma 4. Scheme 4 is correct. Additionally, if the accumulator is collision-
free and the signature scheme X is unforgeable, Scheme 4 is collision-free and
unforgeable, respectively, as well.

Proof (Sketch of proof). Correctness follows easily from the correctness of the
accumulator and the signature scheme. Collision freeness follows with a straight-
forward reduction to the collision freeness of the accumulator, and unforgeability
follows from the EUF-CMA security of the signature scheme.
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The existing CT ecosystem does not implement an append-only log with privacy-
preserving membership proofs according to Definition 8. Thus we extend the
existing CT system with privacy-preserving membership proofs using PIR in
Scheme 5.

Let PIR be a private information retrieval scheme where the witnesses are stored in the
PIR databases.

PMQuery(zi,i,n): For each Merkle-tree level v € [k] run (q;-”))je[n] —
PIR.Q(n, [Y/2v| + n) where n = 1 if |1/2v] = 0 (mod 2) and = —1 otherwise.
Return ((Q§v))ve[k])je[n].

PMAnswer (5, g;): Parse g; as (qj<.v)) and run a§v> + PIR.A(j, q§.v>) for each Merkle-tree
].

level v € [k]. Return (a§v))ve[k].
PMReconstruct(i, (a;)jem): Parse (aj)jem) as (ag-v))ve[k] and run witg,[v] <+
).

PIR.M(3, (aE”) jemy) for each v € [k]. Return wity, .

Scheme 5: CT log with privacy-preserving membership proofs.

For the case with n = 2, i.e. two servers, we specialise in Scheme 6 the scheme
using the DPF-based PIR from Section 2.5. For both schemes, the client traverses
each level of the tree and calculates the index of the element he needs to retrieve
for the Merkle-tree witness, with the server input to the PIR functionality being
the hashes in the current tree level. The privacy guarantees of Scheme 6 follow
from the privacy guarantees of the used PIR scheme.

Theorem 1. IfPIR is computationally secret, then Scheme 5 is computationally
secret too.

Proof. Indeed, the k-fold application of PIR’s Sim algorithm induces a simulation
algorithm on the combined distribution of successive queries.

For the DPF-based instantiation, this means that the scheme provides secrecy
if the two servers do not collude.

Remark 1 (Database Representation). While this scheme as presented has the
advantage that the structure of the PIR database closely resembles the Merkle-
tree and does not induce much storage-overhead, we also now discuss a possible
alternative representation as used by Lueks and Goldberg [LG15], where they
precompute the full Merkle-tree proof for each item and store it in a separate
database. This reduces the amount of PIR queries to 1, which can improve per-
formance if the PIR scheme is the performance bottleneck. However, such a
representation has the disadvantage that updates to the Merkle-tree accumu-
lator are much more costly, since the precomputed proofs need to be updated
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Client Server j
Input: index i, Merkle-tree size N Input: Merkle-tree £ with size N

PMQuery(0,4,2) :
for v =0 to [logy N:
n1=2-([Y/20] (mod 2))
1, k3 < DPF.Gen(|¥/2v]| +n)

a1+ (K1) efiog, n7)

g2 ¢ (k2)yeqfiog, N1)

return (q1,q2)

for j =1 to 2:
PMAnswer (3, ¢;) :
qj
P 0 ;.1 [logy N
arse g; as (kj, kj,....k;
for v =0 to [logy N:
K < DPF.Eval(k})
[N/2" ]
aj = @ b K[K]
k=0
@5 (95) ,efiog, N1)
a;
PR

return a;

PMReconstruct(2, {a1,a2}) :

return (aj ® ag)ve[[logg NT]

Scheme 6: Privacy-Preserving Retrieval of Membership Proofs instantiated
with DPF-based PIR.

if the accumulator changes, increasing the cost of updates to O(n), where n is
the number of total items in the accumulator. Furthermore, for our DPF-based
PIR implementation, the actual cost of the PIR is composed of (i) the DPF
evaluation and (ii) the inner product of the database items. Our highly perfor-
mant DPF implementation results in the inner product dominating this time
(see Section 5.2). If we perform one PIR per tree level, we calculate an inner
product with a database containing a single hash value per item, whereas, for the
separate database of full proofs, we perform the inner product with a database
containing k£ hash values per item, where k is the tree height. This results in the
total time spent on the inner product being longer in the case of the separate
database since in the tree-based PIR approach the number of items in the PIR
database is halved each level. Therefore, and due to the costly updates and more
substantial memory requirements, we use the tree-based PIR approach over the
separate database of precomputed proofs. In Section 5.3, we give a comparison
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between these two approaches and give evidence that the tree-based database
structure is superior.

3.3 Using Public-Key Accumulators

Scheme 4 only requires that the underlying accumulator’s Eval and WitCreate
algorithms only rely on public keys and public parameters. Scheme 6 does not
require any special properties. While the latter is defined to efficiently fetch the
witnesses of a Merkle-tree accumulator, for any other accumulator it can be de-
fined by retrieving witnesses stored in a database using a PIR protocol. Hence it
is also possible to instantiate the append-only log using public-key accumulators,
e.g., with Scheme 2 and Scheme 3. We discuss the performance characteristics
of instantiations using different kinds of accumulators in Section 5.2.

However, if Scheme 4 would allow one to use accumulators where servers also
have access to the accumulator’s secret key, servers could produce witnesses for
elements that were not added to the accumulator (c.f. [DHS15, Section 3]). In
Appendix A we discuss this fact for the RSA accumulator (Scheme 2). A similar
fact can also be observed for the bilinear accumulator presented in Scheme 3.
In that case, knowledge of the exponent s would allow the server to fabricate
witnesses for non-accumulated elements. Thus, when using public-key accumu-
lators to instantiate the append-only log, it is essential that the accumulator is
set up by a trusted third party.

4 Sub-Accumulators in CT-Logs

Using private information retrieval (PIR) to retrieve CT log membership proofs
comes with increased computation and communication complexity, especially for
the log server. In this section, we explore options that can reduce this complexity
and make privacy-preserving membership queries more practical.

In the current CT logging ecosystem, adding new certificates to the log server
does not happen instantly. Instead, the submitting parties get a signed promise
of inclusion into the log, and all submitted certificates are only appended to the
log at certain time intervals. The length of these intervals is not specified by the
standard, but a certificate must be included in the log after the maximum merge
delay (MMD) set by the log operator (usually 24 hours). This process allows us
to restructure the Merkle-tree to reduce the overall depth of the tree that has
to be traversed during the PIR protocol.

In Section 1.4 we discussed some of the methods outlined by the designers to
increase the user’s privacy when requesting membership proofs from the log
server. One of the proposed solutions is to embed the proof in a certificate
extension; however, such a proof would quickly get out of sync with the current
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accumulator value of the log. We, therefore, suggest using a hybrid approach
of static and dynamic accumulators instead. A static accumulator requires the
whole set of elements X to be accumulated to be available when building the
accumulator, with no further updates permitted. Even though the CT ecosystem
continually receives updates for new certificate chains, we can still make use of
static accumulators. We collect all new certificates for a specified time interval
into a set A} and build a static accumulator Ay,. Since the accumulator for this
small set &} is static, we can generate a witness wit,, for each z; € X}, proving
membership of z; in Ay,, and attach this witness to the SCT or embed it in the
certificate, since we do not require any updates to the witness in the future.

These small static accumulators for a given time interval are then in turn ac-
cumulated in a dynamic accumulator, which as a whole can be seen as the
equivalent of the current CT log. This process helps to reduce the size of the dy-
namic accumulator, which in turn reduces the complexity of the PIR approach.
A client only needs to fetch the inclusion proof for the dynamic accumulator
using PIR and verifies the membership of the certificate in the sub-accumulator
and the membership of the sub-accumulator in the dynamic accumulator.

Ezample 1 (New sub-tree every hour). The largest CT log servers, e.g., Google
Argon, have an average throughput of &~ 60000 certificates per hour. Thus build-
ing a sub-tree per hour means that we need to accumulate about 2'¢ elements
in the static sub-accumulators. In turn, if we assume a runtime of 3 years, this
would result in a total of 24 - 365 - 3 = 26280 items in the dynamic accumulator.
If we instantiate this dynamic accumulator using a Merkle-tree accumulator, we
have a tree depth of 15, which is very feasible to retrieve using multi-server PIR.

For the choice of static sub-accumulators, we consider two possibilities: using
static Merkle-tree accumulators or using public-key based static accumulators.

Merkle-Tree Sub-Accumulators A straight-forward implementation is to
also use Merkle-tree accumulators to instantiate the sub-accumulators. This es-
sentially amounts to a conceptual categorization of some sub-tree of the original
accumulator as static sub-accumulators, with the only change to the original
accumulator being the guarantee that a sub-tree is static and does not accept
any additional values.

Public-Key Sub-Accumulators An alternative to using static Merkle-tree
accumulators the leaves of our big Merkle-tree would be to use static public-key
based accumulators instead. These public-key accumulators have different trade-
offs compared to Merkle-tree accumulators. They usually offer a constant-size
membership proof and accumulation value, compared to the logarithmic proof
size of Merkle-tree accumulators. However, both the generation and verification
algorithms of public-key accumulators usually require more computationally ex-
pensive public-key operations. Furthermore, public-key accumulators require a
trusted setup phase as we discussed in Section 3.3.
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From a web server point of view, the constant size proofs of public-key accu-
mulators are beneficial in theory, as the required communication only grows
by a small, fixed amount. Furthermore, the web server does not actually have
to perform any public-key operations but only relays the witness to the client,
which then performs the verification algorithm. However, we are considering sub-
accumulator sizes, where the combined size of the membership proof and accu-
mulator value are very similar for Merkle-tree accumulators, RSA accumulators,
and bilinear accumulators. This fact, combined with the setup requirements and
the lower performance, makes the use of public-key accumulators less attractive
in our setting.

We now discuss our approach more formally and show that the so obtained
append-only log still provides secrecy. The sub-accumulator approach can be
interpreted as an accumulator of accumulators. We cast our approach in into
the accumulator framework in Scheme 7 where we use the second argument of
the Gen algorithm to define the size of the sub-accumulators.

Let OA and IA be accumulators.

Gen(17,T): Let (ski, pk;) < IA.Gen(1%,T") and (sko, pk,) + OA.Gen(1"%, 00). Set sk +
0 and pk, < (pk;, pk,,T). Return (ska, pky).

Eval((ska, pky), X'): Parse pk, as (pk;,pk,,T). Partition X into T-sized subsets
X1, ..., X, with X, having potentitally less than T elements. For j € [¢] com-
pute (Aj,aux;) < IA.Eval((0, pk;), X;) and (Ax,aux) < OA.Eval((®, pk;), (Aj)jeiq)-
Set auxx  ((Xj,A;,aux;) elq,aux) and return Ax,auxx.

WitCreate((ska, pkp), Ax,auxx,x): Parse  pky, as  (pk;,pk,,7) and auxxy
as  ((Xj,Aj,aux;);ep,aux). Find j € [f such that =z € A&;. Now
compute  wit; +— IA.WitCreate((0, pk;), Ax;,aux;, ) and  wit, +—
OA.WitCreate((, pk,), Ax,aux, Ax;). Return (wit;, A;, wit,).

Verify(pka, Ax, wit,, x): Parse pk, as (pk;, pk,,T) and wit, as (wit;, A;, wito). If both
IA Verify(pk;, A;, wit;) = 1 and Ol.Verify(pk,, Ax,wit,) = 1, return 1, otherwise
return 0.

Scheme 7: Sub-Accumulator based Accumulator.

Lemma 5. If both 1A and OA are collision-free, then Scheme 7 provides collision
freeness.

Proof (Sketch of Proof). Assume that wit, = (wit;, A;, wit,) is a verifiying wit-
ness for x ¢ X. Then either 2 ¢ X for all j € [¢] and hence (z,wit;) breaks
collision freeness of 1A, or A; was not accumulated in Ay, thus (A;, wit,) breaks
collision freeness of OA.

Making this accumulator dynamic or at least providing an Add algorithm is more
involved, though. If one adds one element at a time, it is necessary to add to A}
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and update its accumulator until the X} is also of size T. However, then, one has
to remove the old accumulator value from the outer accumulator and add the
new one. Hence it is more efficient to gather T" elements and then add them at
once. In that case, it is sufficient to add one accumulator to the outer accumu-
lator. Alternatively, one could also add sets with less than T' elements with one
additional sub-accumulator without touching any of the old accumulator values
at the cost of a larger outer accumulator.

Integration into the append-log scheme with privacy-preserving membership
proof using this approach of adding T" elements together is straightforward pro-
vided that the outer accumulator is a Merkle-tree or provides an Add algorithm.
Consequently, we obtain such a scheme providing computational secrecy with
non-colluding servers.

Corollary 1. Scheme 6 instantiated with Scheme 7 provides computational se-
crecy if the PIR servers are mon-colluding and all sub-accumulator witnesses
have the same size.

Proof. This follows from Theorem 1. If the sub-accumulator witnesses do not
have the same size, it is possible to distinguish queries for witnesses which do
not have the same size.

For improved efficiency in the context of certificate transparency, we make use of
the fact that we can include parts of the proof into extension fields of the SCT or
the certificate. Note that, throughout its lifetime, wit; and A; stay constant, and
only wit, needs to be updated after adding new elements to the append-only log.
Hence we add wit; and A; to CtExtensions. Then only wit, needs to be retrieved
using the PIR protocol, thus greatly reducing its cost. With this approach, we can
always avoid the restriction of requiring equal-sized sub-accumulator witnesses.

4.1 Additional Considerations

As discussed in Section 3.3, public-key accumulators usually require a setup
phase involving a trusted third party. Otherwise, the party holding the accumu-
lator might have access to the secret trapdoor information, allowing the creation
of witnesses for elements that are not actually contained in the accumulator. A
popular alternative to a trusted third party is the use of multi-party computation
to compute the public parameters. One prominent example of such an approach
is the “ceremony” of the cryptocurrency Zcash based on [BCG'14], where a
multi-party computation was performed including hundreds of participants in
a scalable multi-party protocol to generate the public parameters for the used
proof system [BGM17].

We leverage the non-collusion property of the servers to generate the parameters
for the used public-key accumulator using multi-party computation protocols.
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In recent years, more and more efficient solutions for distributed parameter gen-
eration have emerged, e.g., for distributed RSA key generation [FLOP18], where
the authors report a time of 134 seconds on a single core per party to generate
a distributed RSA key pair, or for distributed ECDSA key generation [Lin17].
Similar techniques can be employed to generate public parameters for a bilinear
accumulator in a distributed fashion.

5 Implementation & Evaluation

In this section, we describe our implementation of the DPF-based PIR to re-
trieve Merkle-tree inclusion proofs. We integrate our implementation into the
existing CT log server infrastructure provided by Google and then evaluate its
performance.

Using the DPF construction of Boyle et al. [BGI15] and its extensions [BGI16],
we can efficiently generate and evaluate the DPF using only AES, which is very
performant when using the AES-NI instructions in modern x86-64 CPUs. Like
Wang et al. [WYGT17], we use the Matyas-Meyer-Oseas one-way compression
function [MMOS85], defined as H(x) = Ey,(x) ® x. The fixed-key property of
this construction allows us to benefit from the fact we only have to perform
the AES key schedule once for maximum performance. Furthermore, we use the
full-domain evaluation algorithm proposed by [BGI16] to avoid calculating inter-
mediate results multiple times and optimize the implementation with respect to
AES and vector pipelining. Additionally, the inner product of the expanded DPF
keystream and the 256-bit long SHA-256 hash values in the Merkle-tree can be
efficiently calculated using AVX vector operations, making our multi-server PIR
suitable for large log sizes. For experiments using public-key accumulators, we
base our implementation on the work of Tremel®. We report microbenchmarks
on the performance of our implementations in Section 5.2.

5.1 Integration into existing CT log server infrastructure

The Google CT team provides two open-source implementations of a CT log
server. The original prototype implementation!? written in C4++, and their new
CT log server'! written in Go, using Trillian'2, a scalable implementation of a
Merkle-tree accumulator with separate data storage layers, as a backend.

To show the practicality of our solution, we integrate a prototype into the C++
implementation'® and provide libraries for DPF-based PIR for both, C4++'* and

9 https://github.com/etremel/crypto-accumulators/

10 https://github.com/google/certificate-transparency

" https://github.com/google/certificate-transparency-go
12 https://github.com/google/trillian

3 https://github.com/dkales/certificate-transparency

" https://github.com/dkales/dpf-cpp
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Go.'» We added new HTTP endpoints for retrieving proofs using DPF, given
the index of the hashes in the SCTs, and extended the existing client software to
verify retrieved SCTs against two servers. This new API was then used to verify
the inclusion of several certificates in the log. We believe that the integration
of the DPF-based PIR into the C++ log server is easily adaptable to the Go
CT log server. We refer to the microbenchmarks in the following section for the
performance overhead compared to the existing approach.

5.2 Performance Evaluation

To show the practicality of our solution, we evaluated both a DPF-based PIR
on a standard Merkle-tree as currently used in CT logs, as well as DPF-based
PIR on a Merkle-tree with hourly sub-accumulators to reduce the tree depth and
complexity of the PIR query. We consider multiple different log server sizes based
on existing log servers, more concretely, we perform benchmarks on log servers
with N € {220,222 224 226 2281 certificates.!® All experiments are performed
on a desktop PC equipped with an Intel® Core™ i7-4790 CPU @ 3.60GHz
and 16 GB of RAM. We perform microbenchmarks on the different parts of the
protocol. All tests are performed using a single-threaded implementation only;
however, we remark that the server-side operations, the DPF.Eval algorithm and
the inner product calculation, are trivially and perfectly parallelize-able, e.g.,
when using 4 threads, we observe a speedup of =~ 4x.

N Client Server Client Communication

DPF.Gen DPF.Eval Inner Prod. Verification|C — S; C < S;
220 0.05 0.32 4.28 <0.01 2298 640
222 0.07 1.23 16.72 < 0.01 2886 704
224 0.08 4.78 64.49 < 0.01 3546 768
226 0.09 19.22 251.32 <0.01 4278 832
228 0.11 78.41 088.93 < 0.01 5082 896

Table 2. Performance of DPF-based PIR when retrieving privacy-preserving mem-
bership proofs from a standard Merkle-tree based log server containing N certificates.
Time in milliseconds, communication in bytes per server. Merkle-trees for larger log
servers no longer fit into the main memory of our test machine.

In Table 2, we present the microbenchmarks when using DPF-based PIR to
retrieve the Merkle-tree inclusion proof. We observe that even for a server with
228 (~ 270 million) certificates, the total work for the server is just 1.067 seconds,
whereas the client workload is less than 1 millisecond. The total communication

5 https://github.com/dkales/dpf-go/tree/master/dpf
16 For larger log server sizes, the data no longer fits in the RAM.
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N N Sub-acc. N Client Server Client Communication

A type st DPF.Gen DPF.Eval Inner Prod. Verification|C — S; C + S; extra
23t 915 RSA 216 0.03 0.01 0.09 3.97 1143 480 384
231 215 Bilinear 2% 0.03 0.01 0.09 2.81 1143 480 768
231 915 Merkle 216 0.03 0.01 0.09 < 0.01 1143 480 512
231 921 RSA 20 0.06 0.62 7.68 3.97 2583 672 384
231 221 Bilinear 2'° 0.06 0.62 7.68 2.81 2583 672 768
231 921 Merkle 2'° 0.06 0.62 7.68 < 0.01 2583 672 320

Table 3. Performance of DPF-based PIR when retrieving privacy-preserving membership proofs from a log server with sub-accumulators.
The number of sub-accumulators in the upper tree is Na, the maximum number of elements per sub-accumulator is Ngup. Time in
milliseconds, Communication in bytes per server.
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between the parties is less than 6 KB. The inner product of the SHA-256 hashes
is dominating the runtime. One possible future optimization to further speed up
this inner product step would be the use of AVX512 instructions to process two
hash values at once.

Table 3 shows the performance of our sub-tree approach. We observe that the
total execution of the DPF-based PIR with a reduced tree size of 15 levels results
in a total runtime of 130 us. The client verification time is slower when using PK
accumulators in sub-trees, but still in the order of milliseconds. We also list the
additional communication of the sub-accumulator and the corresponding witness
in the “extra” column, as the web server needs to send this information included
in the SCT. This approach is very performant, even for logs containing a total
of 23! certificates.

While the client verification times for the used public-key accumulators are very
fast, a problem manifests on the server side. Since we set up the public-key
accumulators on public-parameters only, we cannot use the secret trapdoor in-
formation to speed up accumulation and witness generation for the RSA and
bilinear accumulators. This results in much worse performance for these two
operations, especially generating witnesses for each element. Table 4 shows the
performance of these two operations for 2'° and 2'® elements, which roughly
correspond to creating one sub-accumulator per minute and hour on larger log
servers respectively. We observe that for the public-key accumulators we evalu-
ated (using a security level of 128 bits), the only realistic parameter set is using
bilinear accumulators for sub-trees of size 2'°, which roughly corresponds to
one sub-tree per minute. For the other options, accumulating all elements and
generating the witnesses would take longer than the intended time-frame of one
hour for 2'6 elements or one minute for 2!° elements. A possible solution would
be to retain the secret parameters and keep them split into shares, with servers
engaging in a multi-party computation protocol to compute witnesses using the
shares of the secret trapdoor information. The design and implementation of an
efficient protocol for this task is an interesting avenue for future work. However,
for our current system and implementation, we recommend using Merkle-tree
accumulators for the sub-accumulators.

Accumulator Ngup, ‘Accumulation Witness gen.

216 63.47 ~ 1000000

RSA 210 1.06 264.15
Bili 216 2.99 95672.12
tinear 910 0.12 24.43
216 0.03 0.09

Merkle 210 <0.01 <0.01

Table 4. Performance of one-time server-side sub-accumulator operations (without
trapdoor information). Time in seconds.
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5.3 Comparison to Lueks and Goldberg [LG15]

The only previous work aiming to improve the privacy of retrieving CT log mem-
bership proofs is by Lueks and Goldberg [LG15], where the authors optimize the
PIR scheme of Goldberg [Gol07, DGH12] to allow for efficient batching of multi-
ple queries. The PIR scheme used in [LG15] provides information-theoretic secu-
rity and it is robust, meaning it can be extended so that some servers are allowed
to misbehave, while still allowing the client to recover the item. Furthermore, it
can be scaled up to more than two servers. In comparison, the DPF-based PIR we
use only provides computational security and does not provide robustness, but
can be instantiated very efficiently for two servers. We argue that the robustness
property is not critical in the case of retrieving Merkle-tree inclusion proofs, since
the validity of the retrieved item is later verified against the Merkle-tree head,
allowing for detection of wrong results. We therefore compare to the scheme
of Lueks and Goldberg in its simplest form, using two servers and providing
robustness against 0 misbehaving servers. In Table 5, we give concrete perfor-
mance numbers for both our implementation and the implementation of [LG15],
which has been integrated into Percy++.!” Since both implementations could
benefit from our sub-accumulator approach, we only benchmark performance
of retrieving standard membership proofs. For [LG15], we perform 28 queries
in parallel to make use of their proposed optimizations. We give numbers for
both, the precalculated database of membership proofs and the tree-based ap-
proach we discuss in Remark 1. For [LG15], we follow the recommendation of
the authors and arrange the database in square-root sized blocks to minimize
communication.

Our DPF based implementation outperforms the PIR scheme of Lueks and Gold-
berg in both runtime and communication in all tested configurations, where we
can especially notice the logarithmic communication of the DPF-based PIR. Fur-
thermore, we observe that using our approach of arranging the database to make
use of the tree structure of the Merkle-tree does also improve the runtime and
communication considerably when using the PIR scheme of Lueks and Goldberg,
mostly due to the reduced overall size of the database. This also means we can
keep the whole database for the tree-based representation in memory, resulting
in much better performance. We can observe the jump in runtime from N = 224
to N = 225 when using a database of precomputed proofs for the DPF-based
PIR, which is due to the fact that the database no longer fits into the available
RAM.

Remark 2 (Batch processing of client queries). The main contribution of Lueks
and Goldberg [LG15] was the optimized batch processing of queries, where a
server can process multiple queries at an asymptotically lower cost than pro-
cessing each query individually. Their approach even manages to batch queries
from different clients together, which is beneficial in systems such as CT. For

17 http://percy.sourceforge.net/

28


http://percy.sourceforge.net/

N ‘Protocol DB structure‘Time/Query Comm.

Tree 0.02 3.5

922 DPF Precomputed 0.28 0.98
Tree 0.08 77.6

[LG15] Precomputed 0.59 108.7

Tree 0.06 4.2

924 DPF Precomputed 1.23 1.08
Tree 0.24 155.0

[LG15] Precomputed 3.54 222.4

Tree 0.25 4.99

926 DPF Precomputed 82.61 1.17
Tree 0.78  312.0

[LG15] Precomputed - —

Tree 1.03 5.8

928 DPF Precomputed 450.51 1.28
Tree 3.57  625.5

[LG15] Precomputed - -

Table 5. Comparison of different PIR protocols when retrieving a membership proof
from a log of N certificates. Time in seconds, Communication in KiB per server. A
value of — indicates the implementation ran out of memory.

our DPF-based PIR, we cannot batch queries for different clients, but can still
optimize multiple queries from the same client. This scenario is realistic due to
two factors. First, when a client connects to a website, he usually does not only
retrieve one certificate, but instead connects to multiple different web servers
hosting stylesheets, Javascript files, images, or other resources, verifying each
certificate. Second, the auditor in each TLS client can collect multiple certifi-
cates to audit them in batches at a later time. Demmler et al. [DRRT18] use
a binning approach for queries in their PIR-PSI protocol, which can also be
applied to our use-case. The main idea is to partition the database into 8 bins
of N/j items each. When the indices of queries are uniformly distributed, the
maximum number of items per bin can be bounded probabilistically. All bins are
then padded to the maximum number of items, and multiple smaller queries are
performed for each bin. The overall runtime is expected to decrease, with a slight
increase in communication, depending on the choice of 3. We refer to [DRRT18]
for a more detailed discussion.

5.4 Deployment Considerations

With the enforcement of CT logging by big browser vendors in early 2018, the
CT infrastructure has grown considerably and logged hundreds of millions of
certificates. Any changes to the ecosystem should, therefore, be critically an-
alyzed, as these changes may require widespread updates to server and client
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software. Our log with privacy-preserving membership proofs has the advantage
that it can co-exist alongside existing log servers and does not require signifi-
cant changes. Embedding proofs for the sub-accumulators in an extension field
of the SCT means that a web server does not require any changes to support our
proposed changes, as his job is to provide the SCTs to the client. For the client,
the auditor code has to be extended to distinguish a log with privacy-preserving
membership proofs from a standard log, and to use the new API endpoint to
retrieve the proof from the two servers. The log server obviously requires more
substantial changes, but its API is still compatible to a standard log server and
both servers answering DPF-based PIR queries can still answer membership
queries in a standard way if no privacy is required.

In addition to these considerations regarding the disruption of the existing
ecosystem, we also require a non-collusion assumption between the two servers
participating in the PIR query. This non-collusion assumption can be solved by
hosting the second server on a cloud platform potentially run by a competitor
of the first log server provider, as was also proposed by [DRRT18]. To maintain
their reputation, the cloud providers have a significant incentive not to collude.
The second server could also be hosted by privacy-conscious organizations and
advocacy groups such as the European Digital Rights (EDRIi) or the Electronic
Frontier Foundation (EFF). Furthermore, the system is not strictly limited to
two parties. Several such non-colluding servers could exist, and an auditor-client
could pick any two of them to perform a privacy-preserving membership proof.

Remark 3 (Cloning Existing Log Servers). We now describe another approach
to facilitate better integration into the existing CT logging ecosystem. Instead
of setting up a new log server and accepting the submission of new certificates,
we rely on the CT ecosystem and clone the data of an already existing log
server. In addition to monitoring the cloned log server for consistency, we can
now restructure the certificates contained in the cloned log server in sub-trees.
Furthermore, other monitors can verify the consistency of our new log servers
against the cloned one. The new sub-accumulator based log servers then hand
out their own SCTs (including PIR index ¢ and sub-accumulator witness wit;)
to existing domain owners that want to provide privacy to their users. These
SCTs can then be delivered to clients by the web server, and clients can choose
to perform a privacy-preserving membership proof against the new log servers
instead of a regular one.

6 Conclusion

In this work, we have reiterated potential privacy problems for the CT ecosys-
tem and presented a solution based on two-server PIR that offers competitive
performance for real-world parameters. Furthermore, we present an approach
using sub-accumulators that reduces the complexity of the PIR queries to a
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point where a single server could handle multiple thousands of requests per sec-
ond, and show how such an approach can be set up by mirroring existing log
servers, providing a privacy-preserving alternative for auditors. We have shown
the practicality of our solution by integrating it into the existing CT log server
implementation and performed a performance evaluation for several different
parameter sets. We believe our approach could offer privacy-conscious users an
alternative and further strengthen the existing CT ecosystem.
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A Membership Witnesses for Non-Accumulated
Elements

We consider Scheme 2 with pky, = (N, g, H) and ska = (p, ¢) where N = p-q. Let
X be some set and 2 ¢ X such that H(x) is invertible mod (p—1)-(¢—1). Now,
the accumulator for X is computed as Ay = gll=rex H(=") mod N. Yet, as the

-1
factorization of N is known, the server can compute wit, = /\g(w) mod N.

Although z is not member of X, wit!® = Ay (mod N) holds and thus the
verification succeeds.

Assuming that p and ¢ are s bit primes p—1 and ¢—1 have at most & £#—1/log(x—1)
prime factors and if the have a large prime factor, upper bound is a lot smaller.
H(z) is invertible if H(x) is not one of the prime factors of M. Hence, the chance
of arandom element x with H (z) being non-invertible mod M is approximately

2105(;;) _ K(k—1) k(k —1)2
228 T oyk—1 _ — gk—1(r _ 9"
= 4r=1og(k — 1) — 45— 1(k — 2)

This gives the server opportunity to produce membership witnesses for non-
accumulated elements with high probability.

B Signature Schemes

In this section, we shortly recall the standard definition of signature schemes.

Definition 10 (Signature Scheme). A signature scheme X is a triple (Gen,
Sign, Verify) of PPT algorithms, which are defined as follows:

Gen(1%): On input of a security parameter, this algorithm outputs a key pair
(sk, pk) consisting of a secret signing key sk and a public verification key
pk.18

Sign(sk, m): On input of a secret key sk and a message m, this algorithm outputs
a signature o.

Verify(pk, m,0): On input of a public key pk, a message m and a signature o,
this algorithm outputs a bit b.

For correctness, we require that for all security parameters k € N, for all key
pairs (sk, pk) < KeyGen(1%), for all messages m € M, it holds that

Pr [Verify(pk, m, Sign(sk,m)) = 1] = 1.

Additionally, we require them to be EUF-CMA-secure.

18 We assume that pk implicitly defines the message space M.
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Definition 11 (EUF-CMA). The advantage Adviye.cmal(-) of an adversary A
in the EUF-CMA experiment is defined as

Pr (sk, pk) « Gen(1%), (m*,0*) + ASG<)(pk):
o

m* ¢ Q5 A Verify(pk,m*, %) =1 ’

where the environment maintains an initially empty list Q% and the oracles are
defined as follows:

S(sk,m) : Set Q° + Q%5 U {m} and return o < Sign(sk,m).

A signature scheme is existentially unforgeable under random message attacks,
if for every PPT adversary A, AdvéUF_CMA(-) is bounded by a negligible function
in the security parameter k.
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